当前位置:
X-MOL 学术
›
J. Chem. Eng. Data
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Correction to “Viscosity and Interfacial Tension of Binary Mixtures of n-Hexadecane with Dissolved Gases Using Surface Light Scattering and Equilibrium Molecular Dynamics Simulations”
Journal of Chemical & Engineering Data ( IF 2.0 ) Pub Date : 2023-07-31 , DOI: 10.1021/acs.jced.3c00438 Tobias Klein , Frances D. Lenahan , Manuel Kerscher , Julius H. Jander , Michael H. Rausch , Thomas M. Koller , Andreas P. Fröba
Journal of Chemical & Engineering Data ( IF 2.0 ) Pub Date : 2023-07-31 , DOI: 10.1021/acs.jced.3c00438 Tobias Klein , Frances D. Lenahan , Manuel Kerscher , Julius H. Jander , Michael H. Rausch , Thomas M. Koller , Andreas P. Fröba
The experimental data for the dynamic viscosity ηL and the interfacial tension σ of the binary mixture consisting of n-hexadecane with dissolved hydrogen (H2) investigated at a pressure p = 3.5 MPa had to be re-evaluated due to an error in the previous data evaluation. This led to changes in both properties in the temperature range between (373.15 and 473.15) K of up to 4.0%, as indicated by the corrected data (*) in Table 2. The corrected data for the binary mixture containing H2 at p = 3.5 MPa are summarized together with all other data in Figures 1 and 2. Additionally, the deviation plot in the lower part of Figure 2 in the original publication was referring to the deviations in ηL instead of σ in the case of the two binary mixtures containing H2. Also this error was rectified in Figure 2. While the changes in ηL do not influence the discussion of the experimental data, the changes in σ require an addendum. Where the original publication stated that σ of the binary mixtures of n-hexadecane with dissolved H2 are mostly within combined uncertainties with that of pure n-hexadecane, this statement is only true for the binary mixture with xH2 ≈ 0.05. For the binary mixture with the larger amount of dissolved H2, xH2 ≈ 0.10, σ of the binary mixture is up to 9.2% smaller than that of the pure solvent at T < 423 K and agrees within combined uncertainties with the pure solvent at T ≥ 423 K. Asterisks indicate corrected data. Directly measured values for frequency ωq and damping Γ at a defined wave vector q of surface fluctuations were combined with reference data for ρL, ρV, and ηV described in the text to determine ηL and σ by an exact numerical solution of the dispersion relation.5–6 The relative expanded uncertainties (k = 2) for the employed properties are Ur(ρV) = 0.05 and Ur(ηV) = 0.1. For ρL, ηL, and σ, the relative expanded uncertainties Ur(ρL), Ur(ηL), and Ur(σ), respectively, are given in the table. Ur(ρL) for systems which use ρL of pure n-hexadecane in the data evaluation are assigned an estimated uncertainty to account for the unknown impact of the dissolved gas. The relative expanded uncertainty (k = 2) for pressure is Ur(p) = 0.005 for all investigations. The combined expanded uncertainty (k = 2) for the temperature UC(T) for the mixtures containing dissolved CO, CH4, and H2, is 60 mK. UC(T) for all other systems is estimated to be 0.02 at 298.15 K and 0.8 at 573.15 K and can be extrapolated linearly in between. ρL for the He-based systems were taken from experimental investigations in this work. ρL for mixtures containing CH4 or CO2 were taken from Mohammed et al.26 ρL for mixtures containing H2O were calculated using a mass fraction-based mixing rule and the pure component ρL. For all other systems, the influence of the dissolved gas on ρL was neglected. Figure 1. (Top) Liquid dynamic viscosity ηL of the binary mixtures of n-hexadecane with the dissolved gases He, H2, N2, CO, CH4, or CO2 as a function of T (open and closed symbols). For comparison, the correlation for the viscosity of pure n-hexadecane14 is shown (solid line). (Bottom) Deviations of ηL of the binary mixtures from ηL of pure n-hexadecane. The dotted lines mark the average expanded experimental uncertainty (k = 2) of pure n-hexadecane. Error bars are shown only exemplarily for the mixtures containing He for clarity. The mole fractions of the dissolved gas given in the legend are approximate values. The real composition at each temperature can be found in Table 2 in the original publication. Figure 2. (Top) Interfacial tension σ of the binary mixtures of n-hexadecane with the dissolved gases He, H2, N2, CO, CH4, or CO2 as a function of T (open and closed symbols). For comparison, the correlation for the surface tension of pure n-hexadecane14 is shown (solid line). (Bottom) Deviations of the binary mixtures from σ of pure n-hexadecane. The dotted lines mark the average expanded experimental uncertainty (k = 2) of pure n-hexadecane. Error bars are shown only exemplary for the mixtures containing He for clarity. The mole fractions of the dissolved gas given in the legend are approximate values. The real composition at each temperature can be found in Table 2 in the original publication. This article has not yet been cited by other publications. Figure 1. (Top) Liquid dynamic viscosity ηL of the binary mixtures of n-hexadecane with the dissolved gases He, H2, N2, CO, CH4, or CO2 as a function of T (open and closed symbols). For comparison, the correlation for the viscosity of pure n-hexadecane14 is shown (solid line). (Bottom) Deviations of ηL of the binary mixtures from ηL of pure n-hexadecane. The dotted lines mark the average expanded experimental uncertainty (k = 2) of pure n-hexadecane. Error bars are shown only exemplarily for the mixtures containing He for clarity. The mole fractions of the dissolved gas given in the legend are approximate values. The real composition at each temperature can be found in Table 2 in the original publication. Figure 2. (Top) Interfacial tension σ of the binary mixtures of n-hexadecane with the dissolved gases He, H2, N2, CO, CH4, or CO2 as a function of T (open and closed symbols). For comparison, the correlation for the surface tension of pure n-hexadecane14 is shown (solid line). (Bottom) Deviations of the binary mixtures from σ of pure n-hexadecane. The dotted lines mark the average expanded experimental uncertainty (k = 2) of pure n-hexadecane. Error bars are shown only exemplary for the mixtures containing He for clarity. The mole fractions of the dissolved gas given in the legend are approximate values. The real composition at each temperature can be found in Table 2 in the original publication.
中文翻译:
使用表面光散射和平衡分子动力学模拟修正正十六烷与溶解气体的二元混合物的粘度和界面张力
在压力p = 3.5 MPa 下研究的由正十六烷与溶解氢 (H 2 ) 组成的二元混合物的动态粘度 η L和界面张力 σ 的实验数据必须重新评估,因为之前的数据评估。这导致在 (373.15 和 473.15) K 之间的温度范围内这两种特性的变化高达 4.0%,如表 2 中的校正数据 (*) 所示。含 H 2 的二元混合物在 p 处的校正数据= 3.5 MPa 与图 1 和图 2 中的所有其他数据一起汇总。此外,原始出版物中图 2 下部的偏差图指的是 η L的偏差,而不是两个二元情况下的 σ偏差含有H 2的混合物。图 2 中也纠正了该错误。虽然 η L的变化不影响实验数据的讨论,但 σ 的变化需要附录。原始出版物指出,正十六烷与溶解的 H 2 的二元混合物的 σ大部分在与纯正十六烷的组合不确定性范围内,该陈述仅适用于具有x的二元混合物H2 ≈ 0.05。对于溶解 H 2量较多的二元混合物,x H2 ≈ 0.10,在T < 423 K时,二元混合物的 σ 比纯溶剂小 9.2%,并且在组合不确定度范围内与纯溶剂一致。T ≥ 423 K。 星号表示修正后的数据。在定义的表面波动波矢量q处直接测量的频率 ω q和阻尼 Γ 值与文本中描述的ρ L、 ρ V和 η V的参考数据相结合,通过精确数值解确定 η L和 σ色散关系。5–6 所使用属性的相对扩展不确定性 ( k = 2) 为U r (ρ V ) = 0.05 和U r (η V ) = 0.1。对于 ρ L , η L、 和 σ,相对扩展不确定性U r (ρ L )、U r (η L ) 和U r (σ) 分别在表中给出。对于在数据评估中使用纯正十六烷的ρ L的系统, U r (ρ L ) 被分配了估计的不确定性,以解释溶解气体的未知影响。对于所有研究,压力的相对扩展不确定性 ( k = 2) 为U r ( p ) = 0.005。温度的组合扩展不确定度 ( k = 2)对于含有溶解的CO、CH 4和H 2的混合物, U C ( T )为60 mK。所有其他系统的U C ( T ) 在 298.15 K 处估计为 0.02,在 573.15 K 处估计为 0.8,并且可以在两者之间线性外推。He 基系统的ρ L取自本工作的实验研究。含有CH 4或CO 2的混合物的ρ L取自Mohammed 等人。使用基于质量分数的混合规则和纯组分 ρ L计算含有 H 2 O的混合物的26 ρ L。对于所有其他系统,溶解气体对 ρ L的影响被忽略。图 1.(上)正十六烷与溶解气体 He、H 2、N 2、CO、CH 4或 CO 2的二元混合物的液体动力粘度 η L与T的函数关系(开放和封闭符号) 。为了比较,显示了纯正十六烷14的粘度的相关性(实线)。(下)二元混合物的η L与纯正十六烷的η L的偏差。虚线标记平均扩展实验不确定性(k = 2)纯正十六烷。为了清楚起见,仅示例性地显示了包含 He 的混合物的误差线。图例中给出的溶解气体的摩尔分数是近似值。每个温度下的真实成分可以在原始出版物的表 2 中找到。图 2.(上)正十六烷与溶解气体 He、H 2、N 2、CO、CH 4或 CO 2的二元混合物的界面张力 σ与T(开放和封闭符号)的函数关系。为了进行比较,纯正十六烷14的表面张力的相关性显示(实线)。(下)二元混合物与纯正十六烷的 σ 的偏差。虚线标记纯正十六烷的平均扩展实验不确定度( k = 2)。为清楚起见,误差线仅针对含有 He 的混合物进行示例性显示。图例中给出的溶解气体的摩尔分数是近似值。每个温度下的真实成分可以在原始出版物的表 2 中找到。这篇文章尚未被其他出版物引用。图 1.(上)正十六烷与溶解气体 He、H 2、N 2、CO、CH 4的二元混合物的液体动力粘度 η L,或 CO 2作为T (开放和封闭符号)的函数。为了比较,显示了纯正十六烷14的粘度的相关性(实线)。(下)二元混合物的η L与纯正十六烷的η L的偏差。虚线标记纯n的平均扩展实验不确定度 ( k = 2)-十六烷。为了清楚起见,仅示例性地显示了包含 He 的混合物的误差线。图例中给出的溶解气体的摩尔分数是近似值。每个温度下的真实成分可以在原始出版物的表 2 中找到。图 2.(上)正十六烷与溶解气体 He、H 2、N 2、CO、CH 4或 CO 2的二元混合物的界面张力 σ与T(开放和封闭符号)的函数关系。为了比较,显示了纯正十六烷14的表面张力的相关性(实线)。(下)二元混合物与纯n的 σ 的偏差-十六烷。虚线标记纯正十六烷的平均扩展实验不确定度( k = 2)。为清楚起见,误差线仅针对含有 He 的混合物进行示例性显示。图例中给出的溶解气体的摩尔分数是近似值。每个温度下的真实成分可以在原始出版物的表 2 中找到。
更新日期:2023-07-31
中文翻译:
使用表面光散射和平衡分子动力学模拟修正正十六烷与溶解气体的二元混合物的粘度和界面张力
在压力p = 3.5 MPa 下研究的由正十六烷与溶解氢 (H 2 ) 组成的二元混合物的动态粘度 η L和界面张力 σ 的实验数据必须重新评估,因为之前的数据评估。这导致在 (373.15 和 473.15) K 之间的温度范围内这两种特性的变化高达 4.0%,如表 2 中的校正数据 (*) 所示。含 H 2 的二元混合物在 p 处的校正数据= 3.5 MPa 与图 1 和图 2 中的所有其他数据一起汇总。此外,原始出版物中图 2 下部的偏差图指的是 η L的偏差,而不是两个二元情况下的 σ偏差含有H 2的混合物。图 2 中也纠正了该错误。虽然 η L的变化不影响实验数据的讨论,但 σ 的变化需要附录。原始出版物指出,正十六烷与溶解的 H 2 的二元混合物的 σ大部分在与纯正十六烷的组合不确定性范围内,该陈述仅适用于具有x的二元混合物H2 ≈ 0.05。对于溶解 H 2量较多的二元混合物,x H2 ≈ 0.10,在T < 423 K时,二元混合物的 σ 比纯溶剂小 9.2%,并且在组合不确定度范围内与纯溶剂一致。T ≥ 423 K。