当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nickel sulfide/nickel phosphide heterostructures anchored on porous carbon nanosheets with rapid electron/ion transport dynamics for sodium-ion half/full batteries
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2023-03-24 , DOI: 10.1016/j.jcis.2023.03.134
Bingxue Cheng 1 , Beibei Wang 2 , Hongyu Lei 1 , Fan Zhang 1 , Xiaojie Liu 1 , Hui Wang 1 , Gaohong Zhai 1
Affiliation  

Nickel-based materials have been extensively deemed as promising anodes for sodium-ion batteries (SIBs) owing to their superior capacity. Unfortunately, the rational design of electrodes as well as long-term cycling performance remains a thorny challenge due to the huge irreversible volume change during the charge/discharge process. Herein, the heterostructured ultrafine nickel sulfide/nickel phosphide (NiS/Ni2P) nanoparticles closely attached to the interconnected porous carbon sheets (NiS/Ni2P@C) are designed by facile hydrothermal and annealing methods. The NiS/Ni2P heterostructure promotes ion/electron transport, thus accelerating the electrochemical reaction kinetics benefited from the built-in electric field effect. Moreover, the interconnected porous carbon sheets offer rapid electron migration and excellent electronic conductivity, while releasing the volume variance during Na+ intercalation and deintercalation, guaranteeing superior structural stability. As expected, the NiS/Ni2P@C electrode exhibits a high reversible specific capacity of 344 mAh g-1 at 0.1 A g-1 and great rate stability. Significantly, the implementation of NiS/Ni2P@C//Na3(VPO4)2F3 SIB full cell configuration exhibits relatively satisfactory cycle performance, which suggests its widely practical application. This research will develop an effective method for constructing heterostructured hybrids for electrochemical energy storage.



中文翻译:

硫化镍/磷化镍异质结构固定在多孔碳纳米片上,具有钠离子半/全电池的快速电子/离子传输动力学

镍基材料因其优异的容量而被广泛认为是钠离子电池 (SIB) 的有前途的负极。不幸的是,由于充电/放电过程中巨大的不可逆体积变化,电极的合理设计以及长期循环性能仍然是一个棘手的挑战。在此,通过简便的水热和退火方法设计了紧密附着在互连多孔碳片 ( NiS/Ni 2 P@C) 上的异质结构超细硫化镍/磷化镍(NiS/Ni 2 P) 纳米粒子。NiS/Ni 2P 异质结构促进离子/电子传输,从而加速受益于内置电场效应的电化学反应动力学。此外,相互连接的多孔碳片具有快速的电子迁移和优异的电子导电性,同时释放了 Na +嵌入和脱嵌过程中的体积变化,保证了优异的结构稳定性。正如预期的那样,NiS/Ni 2 P@C 电极在 0.1 A g -1下表现出 344 mAh g -1的高可逆比容量和良好的倍率稳定性。重要的是,实施 NiS/Ni 2 P@C//Na 3 (VPO 4 ) 2 F 3SIB全电池配置表现出相对令人满意的循环性能,这表明其具有广泛的实际应用。这项研究将开发一种构建用于电化学储能的异质结构杂化物的有效方法。

更新日期:2023-03-24
down
wechat
bug