当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing Electromechanical Properties of PZT-Based Piezoelectric Ceramics by High-Temperature Poling for High-Power Applications
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-03-17 , DOI: 10.1021/acsami.2c19802 Wugang Wang 1, 2, 3 , Zhengran Chen 1, 4 , Zhiyong Zhou 1, 5 , Yaoguo Li 6 , Ruihong Liang 1, 5
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-03-17 , DOI: 10.1021/acsami.2c19802 Wugang Wang 1, 2, 3 , Zhengran Chen 1, 4 , Zhiyong Zhou 1, 5 , Yaoguo Li 6 , Ruihong Liang 1, 5
Affiliation
Defect engineering is a proven method to tune the properties of perovskite oxides. In demanding high-power piezoelectric ceramic applications, acceptor doping is the most effective method to harden ceramics, but it inevitably degrades the ceramics’ electromechanical properties. Herein, a poling method based on acceptor doping, namely, high-temperature poling, is implemented by applying an electric field above the Curie temperature for poling to achieve a balance of the properties of piezoelectric coefficient d33 and mechanical quality factor Qm. After high-temperature poling, the piezoelectric property of 0.6 mol % Mn-doped Pb0.92Sr0.08(Zr0.533Ti0.443Nb0.024)O3 is d33 = 483 pC/N and Qm = 448. Compared with the traditional poling, the piezoelectric coefficient d33 of the high-temperature poling ceramics increased by approximately 40%, and Qm also increased by nearly 18%. Therefore, high d33 and Qm were exhibited by our PZT piezoelectric ceramics. Rayleigh’s law analysis, XRD, and transmission electron microscopy analysis show that, after high-temperature poling, the considerably increased d33 is related to the large increase in the reversible domain wall motion in the intrinsic effect, while the slightly increased Qm is related to the inhibited irreversible domain wall motion in the extrinsic effect. This study reports a method for high-temperature poling and provides insights into the design of high-power piezoelectric ceramics with high d33 and Qm.
中文翻译:
通过高温极化增强 PZT 基压电陶瓷的机电性能以用于大功率应用
缺陷工程是一种经过验证的调整钙钛矿氧化物性能的方法。在高要求的大功率压电陶瓷应用中,受体掺杂是硬化陶瓷最有效的方法,但它不可避免地会降低陶瓷的机电性能。在此,基于受主掺杂的极化方法,即高温极化,通过施加高于居里温度的电场进行极化,以达到压电系数d 33和机械品质因数Q m特性的平衡。高温极化后0.6 mol % Mn掺杂的Pb 0.92 Sr 0.08 (Zr 0.533 Ti 0.443 Nb)的压电性能0.024 )O 3为d 33 = 483 pC/N,Q m = 448。与传统极化相比,高温极化陶瓷的压电系数d 33提高了约40%, Q m也提高了近18 %。因此,我们的 PZT 压电陶瓷表现出高d 33和Q m 。瑞利定律分析、XRD和透射电子显微镜分析表明,高温极化后,d 33显着增加与本征效应中可逆畴壁运动的大幅度增加有关,而略微增加的Q m与外因效应中抑制不可逆畴壁运动有关。本研究报告了一种高温极化方法,并为设计具有高d 33和Q m的大功率压电陶瓷提供了见解。
更新日期:2023-03-17
中文翻译:
通过高温极化增强 PZT 基压电陶瓷的机电性能以用于大功率应用
缺陷工程是一种经过验证的调整钙钛矿氧化物性能的方法。在高要求的大功率压电陶瓷应用中,受体掺杂是硬化陶瓷最有效的方法,但它不可避免地会降低陶瓷的机电性能。在此,基于受主掺杂的极化方法,即高温极化,通过施加高于居里温度的电场进行极化,以达到压电系数d 33和机械品质因数Q m特性的平衡。高温极化后0.6 mol % Mn掺杂的Pb 0.92 Sr 0.08 (Zr 0.533 Ti 0.443 Nb)的压电性能0.024 )O 3为d 33 = 483 pC/N,Q m = 448。与传统极化相比,高温极化陶瓷的压电系数d 33提高了约40%, Q m也提高了近18 %。因此,我们的 PZT 压电陶瓷表现出高d 33和Q m 。瑞利定律分析、XRD和透射电子显微镜分析表明,高温极化后,d 33显着增加与本征效应中可逆畴壁运动的大幅度增加有关,而略微增加的Q m与外因效应中抑制不可逆畴壁运动有关。本研究报告了一种高温极化方法,并为设计具有高d 33和Q m的大功率压电陶瓷提供了见解。