当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding Interfacial Chemistry Interactions in Energy-Dense Lithium-Ion Electrodes
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2023-01-09 , DOI: 10.1021/accountsmr.2c00198
Donghee Gueon 1 , Miguel A. Gonzalez 2 , Kenneth J. Takeuchi 3, 4, 5, 6 , Esther S. Takeuchi 3, 4, 5, 6 , Amy C. Marschilok 3, 4, 5, 6 , Elsa Reichmanis 1
Affiliation  

For the past two decades, conversion and alloying-type materials have been heralded as the natural heir to commercially available graphite anodes due to their ability to deliver high gravimetric/volumetric power. Commercialization of batteries with these high-energy-density active materials could impact a variety of sectors including electric vehicles, grid storage, and consumer electronics and contribute toward an ever-increasing electrified world. However, the various failure mechanisms from inherent interfacial chemical instabilities associated with these materials make them unable to be merely substituted into currently available electrode fabrication and formulation processing techniques. As a result, realizing the high theoretical capacity and achieving commercial viability of these materials will rely on the careful manipulation of interfacial chemical interactions that dictate and control various kinetic and transport processes across multiple scales of the composite electrode. This has led to a plethora of research that has focused on systematically understanding properties of the different electrode components and designing carefully constructed electrode formulations to achieve composite electrodes with increased chemical stability, enhanced local mixed conductivities, or improved mechanical resilience.

中文翻译:

了解能量密集型锂离子电极中的界面化学相互作用

在过去的二十年里,转化型和合金型材料被认为是市售石墨阳极的天然继承者,因为它们能够提供高重量/体积功率。使用这些高能量密度活性材料的电池的商业化可能会影响包括电动汽车、电网存储和消费电子产品在内的多个领域,并为不断发展的电气化世界做出贡献。然而,与这些材料相关的固有界面化学不稳定性导致的各种失效机制使得它们无法仅仅替代目前可用的电极制造和配方加工技术。因此,实现这些材料的高理论容量和实现商业可行性将依赖于界面化学相互作用的仔细操作,这些相互作用决定和控制跨复合电极多个尺度的各种动力学和传输过程。这导致大量研究集中于系统地了解不同电极组件的特性,并设计精心构建的电极配方,以实现具有更高化学稳定性、增强的局部混合电导率或更高的机械弹性的复合电极。
更新日期:2023-01-09
down
wechat
bug