当前位置: X-MOL 学术Adv. Powder Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards realistic characterisation of chemical reactors: An in-depth analysis of catalytic particle beds produced by sieving
Advanced Powder Technology ( IF 4.2 ) Pub Date : 2023-01-03 , DOI: 10.1016/j.apt.2022.103932
Stylianos Kyrimis , Kathryn E. Rankin , Matthew E. Potter , Robert Raja , Lindsay-Marie Armstrong

Optimization of large-scale fixed particle bed catalytic reactors requires extensive insight into the multi-scale bed structure, even down to the micrometre scale. Theoretical studies of chemical reactors provide a time- and cost-effective means to supporting the optimisation process. However, they rely on simplified assumptions for the particles, e.g. homogeneous perfect spheres. In practise, the preparation of catalytic particles cannot attain this level of uniformity. Typical preparation techniques, such as sieving, are conducted with the aim of obtaining particle size distributions within a pre-defined range, governed by the sizes of the sieves. However, such methods offer limited control in the actual particle sizes and shapes. This paper evaluates the impact of sieving on the resulting particles and overall structural morphology of catalytic beds. The bed structure is quantified using micro-focus computed tomography (µ-CT), enabling the non-destructive examination and analysis of over 150 thousand particles, in terms of particle size, shape, uniformity, and interparticle porosity. Furthermore, the chemical performance of the resulting beds is compared. The detailed characterisation achieved paves the way for the evolution of more rigorous computational models coupling intricate, localised hydrodynamics with realistic chemical processes. Validation of such models at the lab-scale will accelerate the development of more accurate large-scale models.



中文翻译:

对化学反应器的真实表征:对筛分产生的催化颗粒床的深入分析

大型固定颗粒床催化反应器的优化需要深入了解多尺度床结构,甚至要达到微米级。化学反应器的理论研究为支持优化过程提供了一种节省时间和成本的方法。然而,它们依赖于对粒子的简化假设,例如均匀的完美球体。实际上,催化颗粒的制备无法达到这种均匀性水平。典型的制备技术,如筛分,旨在获得预定范围内的粒度分布,该范围由筛子的尺寸决定。然而,此类方法对实际颗粒大小和形状的控制有限。本文评估了筛分对所得颗粒和催化床的整体结构形态的影响。使用微焦点计算机断层扫描 (µ-CT) 对床层结构进行量化,从而能够在粒径、形状、均匀性和颗粒间孔隙率方面对超过 15 万个颗粒进行无损检测和分析。此外,比较所得床的化学性能。获得的详细表征为更严格的计算模型的演变铺平了道路,将复杂的局部流体动力学与现实的化学过程相结合。在实验室规模验证此类模型将加速更准确的大规模模型的开发。能够对超过 15 万个颗粒进行无损检测和分析,包括颗粒尺寸、形状、均匀性和颗粒间孔隙率。此外,比较所得床的化学性能。获得的详细表征为更严格的计算模型的演变铺平了道路,将复杂的局部流体动力学与现实的化学过程相结合。在实验室规模验证此类模型将加速更准确的大规模模型的开发。能够对超过 15 万个颗粒进行无损检测和分析,包括颗粒尺寸、形状、均匀性和颗粒间孔隙率。此外,比较所得床的化学性能。获得的详细表征为更严格的计算模型的演变铺平了道路,将复杂的局部流体动力学与现实的化学过程相结合。在实验室规模验证此类模型将加速更准确的大规模模型的开发。具有现实化学过程的局部流体动力学。在实验室规模验证此类模型将加速更准确的大规模模型的开发。具有现实化学过程的局部流体动力学。在实验室规模验证此类模型将加速更准确的大规模模型的开发。

更新日期:2023-01-03
down
wechat
bug