当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lithium-Rich Li2TiS3 Cathode Enables High-Energy Sulfide All-Solid-State Lithium Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-12-16 , DOI: 10.1002/aenm.202202756 Yaqi Hu 1 , Zhen Sun 1, 2 , Zongliang Zhang 3 , Siliang Liu 1 , Fangbo He 4 , Yang Liu 4 , Zhi Zhuang 4 , Fangyang Liu 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-12-16 , DOI: 10.1002/aenm.202202756 Yaqi Hu 1 , Zhen Sun 1, 2 , Zongliang Zhang 3 , Siliang Liu 1 , Fangbo He 4 , Yang Liu 4 , Zhi Zhuang 4 , Fangyang Liu 1
Affiliation
Outstanding interfacial issues exist between oxide cathodes and sulfide electrolytes in all-solid-state lithium batteries (ASSLBs), while high-capacity Li-rich sulfide cathodes are gaining attention for application. Herein, a sulfide cathode active material Li2TiS3 (LTS) that is chemically compatible with sulfide solid electrolytes, is used in high-performance Li6PS5Cl-based ASSLBs at room temperature. The batteries demonstrate a maximum discharge capacity of 423.2 mAh g−1 (910 Wh kg−1 based on Li2TiS3) with 95% capacity retention after 100 cycles at 0.1 C (0.33 mA cm−2). Traces of elemental sulfur on the surface of LTS are mainly responsible for the excessive Li-intercalation and the capacity exceedance. The Li6PS5Cl is also found to offer a nonnegligible capacity (at least 27% of excess capacity) by comparing the Li6PS5Cl-based and Li3YCl6-based cells using Li2TiS3 as cathode active material. During long cycling, the amorphization and degradation of Li2TiS3 and Li6PS5Cl cause capacity decay. The electrochemical kinetics of Li6PS5Cl-based cells are evaluated as a reference to further exploit the potential of Li2TiS3 material for practical applications in ASSLBs. Overall, this superior Li-rich sulfide material is an attractive alternative to oxide cathodes for the development of high-performance ASSLBs.
中文翻译:
富锂 Li2TiS3 阴极可实现高能硫化物全固态锂电池
全固态锂电池(ASSLB)中氧化物正极和硫化物电解质之间存在突出的界面问题,而高容量富锂硫化物正极的应用越来越受到关注。在此,与硫化物固体电解质化学相容的硫化物正极活性材料 Li 2 TiS 3 (LTS)在室温下用于高性能 Li 6 PS 5 Cl 基 ASSLB。该电池表现出最大放电容量为 423.2 mAh g -1(910 Wh kg -1,基于 Li 2 TiS 3 ),在 0.1 C(0.33 mA cm -2)下循环 100 次后容量保持率为 95%). LTS 表面的痕量元素硫是导致锂嵌入过多和容量超标的主要原因。通过比较使用 Li 2 TiS 3作为阴极活性材料的基于 Li 6 PS 5 Cl 的电池和基于 Li 3 YCl 6的电池,还发现Li 6 PS 5 Cl 提供不可忽略的容量(至少 27% 的过剩容量). 在长循环过程中,Li 2 TiS 3和Li 6 PS 5 Cl的非晶化和降解导致容量衰减。Li 6 PS 5的电化学动力学评估基于 Cl 的电池作为进一步开发 Li 2 TiS 3材料在 ASSLB 实际应用中的潜力的参考。总的来说,这种优质的富锂硫化物材料对于开发高性能 ASSLB 来说是一种很有吸引力的氧化物阴极替代品。
更新日期:2022-12-16
中文翻译:
富锂 Li2TiS3 阴极可实现高能硫化物全固态锂电池
全固态锂电池(ASSLB)中氧化物正极和硫化物电解质之间存在突出的界面问题,而高容量富锂硫化物正极的应用越来越受到关注。在此,与硫化物固体电解质化学相容的硫化物正极活性材料 Li 2 TiS 3 (LTS)在室温下用于高性能 Li 6 PS 5 Cl 基 ASSLB。该电池表现出最大放电容量为 423.2 mAh g -1(910 Wh kg -1,基于 Li 2 TiS 3 ),在 0.1 C(0.33 mA cm -2)下循环 100 次后容量保持率为 95%). LTS 表面的痕量元素硫是导致锂嵌入过多和容量超标的主要原因。通过比较使用 Li 2 TiS 3作为阴极活性材料的基于 Li 6 PS 5 Cl 的电池和基于 Li 3 YCl 6的电池,还发现Li 6 PS 5 Cl 提供不可忽略的容量(至少 27% 的过剩容量). 在长循环过程中,Li 2 TiS 3和Li 6 PS 5 Cl的非晶化和降解导致容量衰减。Li 6 PS 5的电化学动力学评估基于 Cl 的电池作为进一步开发 Li 2 TiS 3材料在 ASSLB 实际应用中的潜力的参考。总的来说,这种优质的富锂硫化物材料对于开发高性能 ASSLB 来说是一种很有吸引力的氧化物阴极替代品。