黄曲霉毒素 B1 (AFB 1 ) 是一种霉菌毒素,由污染农产品的曲霉属物种的成员合成为次级代谢产物。曲霉属物种在热带气候中茁壮成长,是疟疾的地方病。基于青蒿素的联合疗法 (ACT) 可有效治疗和预防疟疾复发;复方蒿甲醚 (COA) 是一种毒性明显的 ACT。尽管对 COA 毒性的研究很少,但科学文献中充斥着 AFB 1的毒性作用 - 包括致癌性。目前的研究调查了 AFB 1和 COA 在实验性 Wistar 大鼠肝肾系统中的毒性。将 30 只白化大鼠随机分为 5 组 (n = 6),并进行如下处理:I 组:未处理的对照(2 mL/kg 玉米油);II 组:单独的 AFB 1 (70 μg/kg);第 III 组:单独的 COA (5 mg/kg);第 IV 组:COA 和低剂量的 AFB1 1(5 毫克/千克和 35 微克/千克);而V 组:COA 和高剂量 AFB1 2(5 毫克/千克和 70 微克/千克)强饲法。我们的结果表明,暴露于 AFB 1和 COA 显着 ( p < 0.05) 降低超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶和谷胱甘肽-S-转移酶活性,此外还降低谷胱甘肽和总巯基水平。在用 COA 和 AFB1 共同处理的大鼠中,活性氧和氮物质、脂质过氧化、8-羟基-2'-脱氧鸟苷、一氧化氮、黄嘌呤氧化酶和髓过氧化物酶水平增加 ( p < 0.05 )。COA 和 AFB1 组的细胞死亡加剧,例如 Caspase-3 和 9 活性增加以及实验大鼠肝脏和肾脏的典型组织学特征发生改变。最后,大鼠与 AFB 1共同治疗和 COA 经历了肝肾失调、氧化和炎症组织损伤以及凋亡细胞死亡的增加。所有观察到的系统性扰动都以剂量依赖性的方式发生。因此,在 COA 治疗方案期间防止 AFB 1饮食污染至关重要,因为实验大鼠肝脏和肾脏的病理生理损伤增加,如本研究所示。
"点击查看英文标题和摘要"
Co-exposure to aflatoxin B1 and therapeutic coartem worsens hepatic and renal function through enhanced oxido-inflammatory responses and apoptosis in rats
Aflatoxin B1 (AFB1) is a mycotoxin synthesised as a secondary metabolite by members of the Aspergillus species contaminating agricultural produce. Aspergillus species thrive in tropical climes, endemic to malaria. Artemisinin-based combination therapies (ACTs) effectively treat and prevent malaria recrudescence; Coartem (COA) is an ACT whose toxicity is evident. Although there are scanty studies on COA toxicity, the scientific literature is replete on AFB1 toxic effects -including carcinogenicity. The current research investigates AFB1 and COA toxicity in experimental Wistar rats' hepatorenal systems. Thirty albino rats were randomly grouped into five cohorts (n = 6) and treated as follows: Group I: Untreated control (2 mL/kg of corn oil); group II: AFB1 alone (70 μg/kg); group III: COA alone (5 mg/kg); group IV: COA and a low dose of AFB11 (5 mg/kg & 35 μg/kg); while Group V: COA and a high dose AFB12 (5 mg/kg & 70 μg/kg) by gavage. Our results show that exposure to AFB1 and COA significantly (p < 0.05) reduced superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities, besides reduced glutathione and total sulfhydryl groups level. Reactive oxygen and nitrogen species, lipid peroxidation, 8-hydroxy-2′-deoxyguanosine, nitric oxide, xanthine oxidase, and myeloperoxidase levels were increased (p < 0.05) in rats co-treated with COA and AFB1. Cell death was aggravated in COA and AFB1 groups, exemplified by increased Caspase-3 and 9 activities and alterations in the typical histological features of experimental rats’ livers and kidneys. Finally, rats co-treated with AFB1 and COA experienced increased hepatorenal dysregulation, oxidative and inflammatory tissue damage, and apoptotic cell death. All the observed systemic perturbations occurred dose-dependently. It is crucial, therefore, to prevent AFB1 dietary contaminations during COA therapeutic regimen due to increased pathophysiological damage exerted on experimental rat liver and kidneys, as evidenced in this study.