Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions
Advanced Science ( IF 14.3 ) Pub Date : 2022-12-01 , DOI: 10.1002/advs.202204502 Boon Chin Heng 1, 2 , Yunyang Bai 3 , Xiaochan Li 3 , Lee Wei Lim 4 , Wang Li 5 , Zigang Ge 5 , Xuehui Zhang 6, 7 , Xuliang Deng 3, 6, 7
Advanced Science ( IF 14.3 ) Pub Date : 2022-12-01 , DOI: 10.1002/advs.202204502 Boon Chin Heng 1, 2 , Yunyang Bai 3 , Xiaochan Li 3 , Lee Wei Lim 4 , Wang Li 5 , Zigang Ge 5 , Xuehui Zhang 6, 7 , Xuliang Deng 3, 6, 7
Affiliation
Bone degeneration associated with various diseases is increasing due to rapid aging, sedentary lifestyles, and unhealthy diets. Living bone tissue has bioelectric properties critical to bone remodeling, and bone degeneration under various pathological conditions results in significant changes to these bioelectric properties. There is growing interest in utilizing biomimetic electroactive biomaterials that recapitulate the natural electrophysiological microenvironment of healthy bone tissue to promote bone repair. This review first summarizes the etiology of degenerative bone conditions associated with various diseases such as type II diabetes, osteoporosis, periodontitis, osteoarthritis, rheumatoid arthritis, osteomyelitis, and metastatic osteolysis. Next, the diverse array of natural and synthetic electroactive biomaterials with therapeutic potential are discussed. Putative mechanistic pathways by which electroactive biomaterials can mitigate bone degeneration are critically examined, including the enhancement of osteogenesis and angiogenesis, suppression of inflammation and osteoclastogenesis, as well as their anti-bacterial effects. Finally, the limited research on utilization of electroactive biomaterials in the treatment of bone degeneration associated with the aforementioned diseases are examined. Previous studies have mostly focused on using electroactive biomaterials to treat bone traumatic injuries. It is hoped that this review will encourage more research efforts on the use of electroactive biomaterials for treating degenerative bone conditions.
中文翻译:
电活性生物材料促进病理条件下骨缺损修复
由于快速衰老、久坐的生活方式和不健康的饮食,与各种疾病相关的骨退化正在增加。活骨组织具有对骨重塑至关重要的生物电特性,各种病理条件下的骨变性会导致这些生物电特性发生显着变化。人们越来越关注利用仿生电活性生物材料来重现健康骨组织的自然电生理微环境,以促进骨修复。本综述首先总结了与各种疾病相关的退行性骨病症的病因学,例如 II 型糖尿病、骨质疏松症、牙周炎、骨关节炎、类风湿性关节炎、骨髓炎和转移性骨溶解。接下来,讨论具有治疗潜力的各种天然和合成电活性生物材料。电活性生物材料可以减轻骨退化的假定机制受到严格的研究,包括增强成骨和血管生成、抑制炎症和破骨细胞生成,以及它们的抗菌作用。最后,对利用电活性生物材料治疗与上述疾病相关的骨退化的有限研究进行了检查。先前的研究主要集中在使用电活性生物材料来治疗骨创伤性损伤。希望这次审查能够鼓励更多关于使用电活性生物材料治疗退行性骨疾病的研究工作。
更新日期:2022-12-01
中文翻译:
电活性生物材料促进病理条件下骨缺损修复
由于快速衰老、久坐的生活方式和不健康的饮食,与各种疾病相关的骨退化正在增加。活骨组织具有对骨重塑至关重要的生物电特性,各种病理条件下的骨变性会导致这些生物电特性发生显着变化。人们越来越关注利用仿生电活性生物材料来重现健康骨组织的自然电生理微环境,以促进骨修复。本综述首先总结了与各种疾病相关的退行性骨病症的病因学,例如 II 型糖尿病、骨质疏松症、牙周炎、骨关节炎、类风湿性关节炎、骨髓炎和转移性骨溶解。接下来,讨论具有治疗潜力的各种天然和合成电活性生物材料。电活性生物材料可以减轻骨退化的假定机制受到严格的研究,包括增强成骨和血管生成、抑制炎症和破骨细胞生成,以及它们的抗菌作用。最后,对利用电活性生物材料治疗与上述疾病相关的骨退化的有限研究进行了检查。先前的研究主要集中在使用电活性生物材料来治疗骨创伤性损伤。希望这次审查能够鼓励更多关于使用电活性生物材料治疗退行性骨疾病的研究工作。