当前位置:
X-MOL 学术
›
Annu. Rev. Stat. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Statistical Methods for Exoplanet Detection with Radial Velocities
Annual Review of Statistics and Its Application ( IF 7.4 ) Pub Date : 2022-11-22 , DOI: 10.1146/annurev-statistics-033021-012225 Nathan C. Hara 1 , Eric B. Ford 2
Annual Review of Statistics and Its Application ( IF 7.4 ) Pub Date : 2022-11-22 , DOI: 10.1146/annurev-statistics-033021-012225 Nathan C. Hara 1 , Eric B. Ford 2
Affiliation
Exoplanets can be detected with various observational techniques. Among them, radial velocity (RV) has the key advantages of revealing the architecture of planetary systems and measuring planetary mass and orbital eccentricities. RV observations are poised to play a key role in the detection and characterization of Earth twins. However, the detection of such small planets is not yet possible due to very complex, temporally correlated instrumental and astrophysical stochastic signals. Furthermore, exploring the large parameter space of RV models exhaustively and efficiently presents difficulties. In this review, we frame RV data analysis as a problem of detection and parameter estimation in unevenly sampled, multivariate time series. The objective of this review is two-fold: to introduce the motivation, methodological challenges, and numerical challenges of RV data analysis to nonspecialists, and to unify the existing advanced approaches in order to identify areas for improvement.
中文翻译:
径向速度系外行星探测的统计方法
系外行星可以用各种观测技术来探测。其中,径向速度 (RV) 具有揭示行星系统结构以及测量行星质量和轨道偏心率的关键优势。RV 观测有望在地球双胞胎的检测和表征中发挥关键作用。然而,由于非常复杂、时间相关的仪器和天体物理随机信号,目前还无法探测到这种小行星。此外,详尽而有效地探索 RV 模型的大参数空间也存在困难。在这篇综述中,我们将 RV 数据分析定义为不均匀采样、多变量时间序列中的检测和参数估计问题。本综述的目的有两个:向非专业人士介绍 RV 数据分析的动机、方法挑战和数值挑战,并统一现有的高级方法以确定需要改进的领域。
更新日期:2022-11-22
中文翻译:
径向速度系外行星探测的统计方法
系外行星可以用各种观测技术来探测。其中,径向速度 (RV) 具有揭示行星系统结构以及测量行星质量和轨道偏心率的关键优势。RV 观测有望在地球双胞胎的检测和表征中发挥关键作用。然而,由于非常复杂、时间相关的仪器和天体物理随机信号,目前还无法探测到这种小行星。此外,详尽而有效地探索 RV 模型的大参数空间也存在困难。在这篇综述中,我们将 RV 数据分析定义为不均匀采样、多变量时间序列中的检测和参数估计问题。本综述的目的有两个:向非专业人士介绍 RV 数据分析的动机、方法挑战和数值挑战,并统一现有的高级方法以确定需要改进的领域。