当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Efficient and Thermally Stable All-Perovskite Tandem Solar Cells Using All-FA Narrow-Bandgap Perovskite and Metal-oxide-based Tunnel Junction
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-10-30 , DOI: 10.1002/aenm.202202948 Pu Wu 1 , Jin Wen 1 , Yurui Wang 1 , Zhou Liu 1 , Renxing Lin 1 , Hongjiang Li 1 , Haowen Luo 1 , Hairen Tan 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-10-30 , DOI: 10.1002/aenm.202202948 Pu Wu 1 , Jin Wen 1 , Yurui Wang 1 , Zhou Liu 1 , Renxing Lin 1 , Hongjiang Li 1 , Haowen Luo 1 , Hairen Tan 1
Affiliation
Commercialization of all-perovskite tandem solar cells requires thermally stable narrow-bandgap (NBG) perovskites and tunnel junction. However, the high content of methylammonium (MA) and organic hole transport layer used in NBG perovskite subcell undermine the thermal stability of all-perovskite tandems. Here, thermally stable mixed lead-tin NBG perovskite solar cells (PSCs) are developed by using only formamidinium (FA) for the A-site cation. Solution-processed indium tin oxide nanocrystals (ITO NCs) are deployed further to replace the conventional organic charge transport layer. Meanwhile, the ITO NCs layer simultaneously functions as a recombination layer in the tunnel junction, which simplifies the architecture of all-perovskite tandem devices. The thermally stable all-FA Pb-Sn PSCs achieve a high power conversion efficiency (PCE) of 21.0%. With the thermally stable all-FA NBG perovskite and optimized tunnel junction, a stabilized PCE of 26.3% is further obtained in all-perovskite tandems. The unencapsulated tandem devices maintain >90% of their initial efficiencies after 212 h aging at 85 °C in the N2 atmosphere. The strategies herein offer a crucial step toward efficient and thermally stable all-perovskite tandem solar cells.
中文翻译:
使用全 FA 窄带隙钙钛矿和基于金属氧化物的隧道结的高效且热稳定的全钙钛矿串联太阳能电池
全钙钛矿串联太阳能电池的商业化需要热稳定的窄带隙 (NBG) 钙钛矿和隧道结。然而,NBG 钙钛矿亚电池中使用的高含量甲基铵 (MA) 和有机空穴传输层破坏了全钙钛矿串联的热稳定性。在这里,热稳定的混合铅锡 NBG 钙钛矿太阳能电池 (PSC) 是通过仅使用甲脒 (FA) 作为 A 位阳离子来开发的。溶液处理的氧化铟锡纳米晶体 (ITO NCs) 被进一步部署以取代传统的有机电荷传输层。同时,ITO NCs层同时作为隧道结中的复合层,简化了全钙钛矿串联器件的结构。热稳定的全 FA Pb-Sn PSC 实现了 21.0% 的高功率转换效率 (PCE)。借助热稳定的全 FA NBG 钙钛矿和优化的隧道结,在全钙钛矿串联中进一步获得了 26.3% 的稳定 PCE。在 85 °C 的 N 中老化 212 小时后,未封装的串联器件保持其初始效率的 >90%2气氛。本文的策略为高效和热稳定的全钙钛矿串联太阳能电池提供了关键的一步。
更新日期:2022-10-30
中文翻译:
使用全 FA 窄带隙钙钛矿和基于金属氧化物的隧道结的高效且热稳定的全钙钛矿串联太阳能电池
全钙钛矿串联太阳能电池的商业化需要热稳定的窄带隙 (NBG) 钙钛矿和隧道结。然而,NBG 钙钛矿亚电池中使用的高含量甲基铵 (MA) 和有机空穴传输层破坏了全钙钛矿串联的热稳定性。在这里,热稳定的混合铅锡 NBG 钙钛矿太阳能电池 (PSC) 是通过仅使用甲脒 (FA) 作为 A 位阳离子来开发的。溶液处理的氧化铟锡纳米晶体 (ITO NCs) 被进一步部署以取代传统的有机电荷传输层。同时,ITO NCs层同时作为隧道结中的复合层,简化了全钙钛矿串联器件的结构。热稳定的全 FA Pb-Sn PSC 实现了 21.0% 的高功率转换效率 (PCE)。借助热稳定的全 FA NBG 钙钛矿和优化的隧道结,在全钙钛矿串联中进一步获得了 26.3% 的稳定 PCE。在 85 °C 的 N 中老化 212 小时后,未封装的串联器件保持其初始效率的 >90%2气氛。本文的策略为高效和热稳定的全钙钛矿串联太阳能电池提供了关键的一步。