当前位置:
X-MOL 学术
›
Int. J. Intell. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stance detection for online public opinion awareness: An overview
International Journal of Intelligent Systems ( IF 5.0 ) Pub Date : 2022-09-25 , DOI: 10.1002/int.23071 Rong Cao 1 , Xiangyang Luo 1, 2 , Yaoyi Xi 1 , Yaqiong Qiao 1, 3
International Journal of Intelligent Systems ( IF 5.0 ) Pub Date : 2022-09-25 , DOI: 10.1002/int.23071 Rong Cao 1 , Xiangyang Luo 1, 2 , Yaoyi Xi 1 , Yaqiong Qiao 1, 3
Affiliation
Stance detection, which focuses on users' deep attitudes, is an important way to understand the online public opinion. This paper presents an overview of stance detection. First, we present a general framework for stance detection, and the main steps of the framework are introduced in detail. The state-of-the-art stance detection methods are categorized into three classes: feature-based methods, deep learning-based methods, and ensemble learning-based methods. Moreover, the advantages and limitations of the existing methods are analyzed. The survey findings show that hybrid-neural network-based methods are superior to the other methods. In addition, existing methods still need to pay more attention to the sentiment information, user-interaction, and attempt to merge more external knowledge to help improve the effect of stance detection.
中文翻译:
在线舆论意识的立场检测:概述
立场检测关注用户的深层态度,是了解网络舆情的重要途径。本文概述了姿态检测。首先,我们提出了一个姿态检测的通用框架,并详细介绍了该框架的主要步骤。最先进的姿态检测方法分为三类:基于特征的方法、基于深度学习的方法和基于集成学习的方法。此外,分析了现有方法的优点和局限性。调查结果表明,基于混合神经网络的方法优于其他方法。此外,现有方法还需要更多地关注情感信息、用户交互,并尝试融合更多的外部知识,以帮助提高姿态检测的效果。
更新日期:2022-09-25
中文翻译:
在线舆论意识的立场检测:概述
立场检测关注用户的深层态度,是了解网络舆情的重要途径。本文概述了姿态检测。首先,我们提出了一个姿态检测的通用框架,并详细介绍了该框架的主要步骤。最先进的姿态检测方法分为三类:基于特征的方法、基于深度学习的方法和基于集成学习的方法。此外,分析了现有方法的优点和局限性。调查结果表明,基于混合神经网络的方法优于其他方法。此外,现有方法还需要更多地关注情感信息、用户交互,并尝试融合更多的外部知识,以帮助提高姿态检测的效果。