当前位置: X-MOL 学术Int. J. Intell. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single image deraining using multi-stage and multi-scale joint channel coordinate attention fusion network
International Journal of Intelligent Systems ( IF 5.0 ) Pub Date : 2022-09-03 , DOI: 10.1002/int.23005
Yitong Yang 1 , Yongjun Zhang 1 , Zhongwei Cui 2 , Zhi Li 1 , Yujie Xu 1 , Haoliang Zhao 1 , Yangtin Ou 1 , Heliang Yang 1 , Xihe Wang 1
Affiliation  

Rain streaks can seriously degrade the visual quality of an image and are detrimental to subsequent algorithms such as object detection and semantic segmentation. Therefore, removing rain streaks is a very important task. The deraining task has two main limitations: the first is to encode information about rain streaks in different densities and directions, the second is to keep the background details of the image while removing the rain streak. To address these limitations, we propose an effective algorithm, called multi-stage and multi-scale joint channel coordinate attention fusion network (MMAFN). We mainly propose a two-stage network structure, both of which use an encoder-decoder network to extract features. The first-stage network extracts coarse features and the second-stage network integrates the features of the former to further refine features. We design the joint channel coordinate attention block to encode features of rain streaks in different directions and densities. In addition, to better fuse features of different scales and enhance the generalization performance of the network, the inception attention branch block and the multi-level feature fusion block are designed. Extensive experiments substantiate the superiority of the proposed network and prove that our method outperforms the recent state-of-the-art method. The average PSNR of the five test sets is improved by 0.2dB. On the Test100 test set, the PSNR is increased by 0.93dB at most.

中文翻译:

使用多阶段和多尺度联合通道坐标注意融合网络的单幅图像去雨

雨纹会严重降低图像的视觉质量,不利于后续算法,如对象检测和语义分割。因此,去除雨痕是一项非常重要的任务。去雨任务有两个主要限制:第一个是对不同密度和方向的雨纹信息进行编码,第二个是在去除雨纹的同时保留图像的背景细节。为了解决这些限制,我们提出了一种有效的算法,称为多阶段和多尺度联合通道坐标注意融合网络(MMAFN)。我们主要提出了一个两阶段的网络结构,两者都使用编码器-解码器网络来提取特征。第一阶段网络提取粗略特征,第二阶段网络融合前者的特征进一步细化特征。我们设计了联合通道坐标注意块来编码不同方向和密度的雨纹特征。此外,为了更好地融合不同尺度的特征,提高网络的泛化性能,设计了inception attention branch block和多级特征融合块。大量实验证实了所提出网络的优越性,并证明我们的方法优于最近最先进的方法。五个测试集的平均 PSNR 提高了 0.2dB。在Test100测试集上,PSNR最多提升0.93dB。我们设计了联合通道坐标注意块来编码不同方向和密度的雨纹特征。此外,为了更好地融合不同尺度的特征,提高网络的泛化性能,设计了inception attention branch block和多级特征融合块。大量实验证实了所提出网络的优越性,并证明我们的方法优于最近最先进的方法。五个测试集的平均 PSNR 提高了 0.2dB。在Test100测试集上,PSNR最多提升0.93dB。我们设计了联合通道坐标注意块来编码不同方向和密度的雨纹特征。此外,为了更好地融合不同尺度的特征,提高网络的泛化性能,设计了inception attention branch block和多级特征融合块。大量实验证实了所提出网络的优越性,并证明我们的方法优于最近最先进的方法。五个测试集的平均 PSNR 提高了 0.2dB。在Test100测试集上,PSNR最多提升0.93dB。大量实验证实了所提出网络的优越性,并证明我们的方法优于最近最先进的方法。五个测试集的平均 PSNR 提高了 0.2dB。在Test100测试集上,PSNR最多提升0.93dB。大量实验证实了所提出网络的优越性,并证明我们的方法优于最近最先进的方法。五个测试集的平均 PSNR 提高了 0.2dB。在Test100测试集上,PSNR最多提升0.93dB。
更新日期:2022-09-03
down
wechat
bug