Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-08-06 , DOI: 10.1016/j.cej.2022.138308 Haiyang Zhou , Dongxian Wen , Xiaolong Hao , Chuanfu Chen , Nianhan Zhao , Rongxian Ou , Qingwen Wang
Developing feasible and eco-friendly methods to fabricate multifunctional wood remains an imperative yet challenging task. Prompted by biomineralization, this study proposes the fabrication of nanostructured wood hybrids with efficient flame retardancy, smoke suppression, mold resistance, and antitermite activity via in situ mineralization of nanosized zinc borate (ZnB) particles in a hierarchical void system of wood. ZnB was successfully deposited in the hierarchical nano/microporous cell wall structures, as confirmed by X-ray microtomography and energy-dispersive X-ray spectroscopy. The mineralized wood exhibited excellent heat insulation performance during combustion. The limiting oxygen index of the mineralized wood with 22.1 wt% ZnB (MW22) increased from 22.6% of the untreated wood to 41.2%. Cone calorimetry testing revealed reductions of 51.4%, 89.0%, and 79.5% in average CO yields, total smoke production, and maximum smoke production ratio, respectively, in MW22 relative to those in the untreated wood; the peak heat release rate and total heat release also decreased by 46.9% and 47.9%, respectively. A noncombustible film of molten ZnB covered and cross-linked the carbonaceous char layer, forming a cohesive and robust 3D residual skeleton, which endowed thermal insulation to the wood, delayed oxygen diffusion, reduced flammable gas release, and suppressed toxic smoke. Antitermite tests showed a mothproofing rating of 10 for MW22, far higher than the rating of 4 for untreated wood. Moreover, MW22 exhibited exceptional mold resistance, with an average infection of 0 and an average protective efficiency of 100%. Therefore, in situ mineralization of the wood cell wall architecture with ZnB provides a facile and feasible strategy to fabricate multifunctional integrated wood, which is suitable for scaling up and can be potentially used in modern green buildings.
中文翻译:
通过在分层木结构中原位矿化硼酸锌制备纳米结构多功能木材杂化物
开发可行且环保的方法来制造多功能木材仍然是一项紧迫而具有挑战性的任务。在生物矿化作用的推动下,本研究提出通过在木材的分层空隙系统中原位矿化纳米硼酸锌 (ZnB) 颗粒,制备具有高效阻燃、抑烟、防霉和防白蚁活性的纳米结构木材杂化物。正如 X 射线显微断层扫描和能量色散 X 射线光谱所证实的,ZnB 成功地沉积在分级纳米/微孔细胞壁结构中。矿化木材在燃烧过程中表现出优异的隔热性能。含 22.1 wt% ZnB (MW 22 ) 矿化木材的极限氧指数) 从未处理木材的 22.6% 增加到 41.2%。锥形量热法测试显示,相对于未经处理的木材,在 MW 22中,平均 CO 产量、总烟雾产生量和最大烟雾产生率分别减少了 51.4%、89.0% 和 79.5% ;峰值放热量和总放热量也分别下降了46.9%和47.9%。一层不可燃的熔融 ZnB 薄膜覆盖并交联了碳质炭层,形成了具有凝聚力且坚固的 3D 残余骨架,从而赋予木材隔热性、延迟氧气扩散、减少易燃气体释放并抑制有毒烟雾。防白蚁测试表明 MW 22的防蛀等级为 10 ,远高于未经处理的木材的等级 4。此外,MW 22表现出优异的抗霉菌性,平均感染率为 0,平均保护效率为 100%。因此,用 ZnB 对木质细胞壁结构进行原位矿化为制备多功能集成木材提供了一种简便可行的策略,该方法适用于扩大规模,可潜在地用于现代绿色建筑。