Nature Communications ( IF 14.7 ) Pub Date : 2022-08-05 , DOI: 10.1038/s41467-022-32361-6 Tianzhu Zhou 1, 2 , Yangzhe Yu 3 , Bing He 1 , Zhe Wang 1 , Ting Xiong 1 , Zhixun Wang 1 , Yanting Liu 1 , Jiwu Xin 1 , Miao Qi 1 , Haozhe Zhang 1 , Xuhui Zhou 1 , Liheng Gao 1 , Qunfeng Cheng 2, 4 , Lei Wei 1
Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.
中文翻译:
通过界面相互作用和热拉伸引起的应力的连续和可控协同作用实现超紧凑 MXene 纤维
MXene 的最新进展(Ti 3 C 2 T x) 纤维,由导电和机械强度高的 MXene 纳米片制备而成,可满足对新兴但有前途的电极材料日益增长的需求,以开发基于纺织品的设备及其他领域。然而,要充分发挥 MXene 纤维的潜力,在导电性和机械性能之间取得平衡仍然是基本挑战,主要是由于难以进一步压实松散的 MXene 纳米片。在这项工作中,我们展示了一种连续可控的途径,通过界面相互作用和热拉伸引起的应力的协同作用,制造具有原位生成保护层的超紧凑 MXene 纤维。得到的具有高取向和低孔隙率的超致密 MXene 纤维不仅具有出色的拉伸强度和超高韧性,而且导电率也很高。然后,我们使用这些超致密纤维构建米级 MXene 纺织品,以实现高性能电磁干扰屏蔽和个人热管理,即使在多次洗涤循环后也具有高机械耐用性和稳定性。所展示的通用策略可应用于广泛的纳米结构材料,以构建用于空间和日常生活中大规模应用的功能性纤维。