Microsystems & Nanoengineering ( IF 7.3 ) Pub Date : 2022-06-15 , DOI: 10.1038/s41378-022-00380-4 Seyed Amir Hossein Banuazizi 1, 2 , Afshin Houshang 3 , Ahmad A Awad 3 , Javad Mohammadi 1 , Johan Åkerman 2, 3 , Liubov M Belova 4
Magnetic force microscopy (MFM) is a powerful technique for studying magnetic microstructures and nanostructures that relies on force detection by a cantilever with a magnetic tip. The detected magnetic tip interactions are used to reconstruct the magnetic structure of the sample surface. Here, we demonstrate a new method using MFM for probing the spatial profile of an operational nanoscale spintronic device, the spin Hall nano-oscillator (SHNO), which generates high-intensity spin wave auto-oscillations enabling novel microwave applications in magnonics and neuromorphic computing. We developed an MFM system by adding a microwave probe station to allow electrical and microwave characterization up to 40 GHz during the MFM process. SHNOs—based on NiFe/Pt bilayers with a specific design compatible with the developed system—were fabricated and scanned using a Co magnetic force microscopy tip with 10 nm spatial MFM resolution, while a DC current sufficient to induce auto-oscillation flowed. Our results show that this developed method provides a promising path for the characterization and nanoscale magnetic field imaging of operational nano-oscillators.
中文翻译:
可操作自旋纳米振荡器的磁力显微镜
磁力显微镜 (MFM) 是一种强大的技术,用于研究磁性微结构和纳米结构,它依赖于带有磁性尖端的悬臂梁的力检测。检测到的磁性尖端相互作用用于重建样品表面的磁性结构。在这里,我们展示了一种使用 MFM 探测可操作纳米级自旋电子器件的空间分布的新方法,即自旋霍尔纳米振荡器 (SHNO),它产生高强度自旋波自振荡,从而在磁控学和神经形态计算中实现新型微波应用. 我们通过添加微波探针台开发了 MFM 系统,以便在 MFM 过程中实现高达 40 GHz 的电气和微波特性。SHNO——基于具有与开发系统兼容的特定设计的 NiFe/Pt 双层——是使用具有 10 nm 空间 MFM 分辨率的 Co 磁力显微镜尖端制造和扫描的,同时流过足以诱导自振荡的直流电流。我们的结果表明,这种开发的方法为操作纳米振荡器的表征和纳米级磁场成像提供了一条有希望的途径。