Cell Reports Physical Science ( IF 7.9 ) Pub Date : 2022-04-25 , DOI: 10.1016/j.xcrp.2022.100870 Keyu Wang 1 , Haolan Tao 2 , Chen Liang 1 , Shiyi Li 1 , Yulin Wu 1 , Yixing Wang 1 , Linzhou Zhuang 1 , Cheng Lian 1, 2 , Honglai Liu 1, 2 , Zhi Xu 1
The oxygen evolution reaction (OER) has been widely studied as an efficient process in energy conversion, yet the majority of studies focus on the strategies to boost the intrinsic activity of the catalyst, rather than considering the enhancement of its mass transfer ability. Herein, we produce efficient NiFe-based OER electrocatalysts with rich oxygen vacancies and abundant transport channels by an argon plasma-engraving strategy. Compared with pristine NiFe, the obtained best NiFe-plasma catalyst yields a 12.5-fold increased current density (from 80 to ∼1,000 mA cm−2) at an overpotential of 300 mV, surpassing most OER catalysts in alkaline solution. Density functional theory calculations disclose that the introduction of oxygen vacancies improve the intrinsic activity and electronic conductivity, while finite element method calculations demonstrate that the construction of catalytic interface and the creation of nanoscale transport channels facilitates mass transfer.
中文翻译:
调节镍铁基电催化剂的多尺度结构以实现高效水氧化
析氧反应(OER)作为一种高效的能量转换过程已被广泛研究,但大多数研究都集中在提高催化剂固有活性的策略上,而不是考虑提高其传质能力。在此,我们通过氩等离子体雕刻策略生产出具有丰富氧空位和丰富传输通道的高效 NiFe 基 OER 电催化剂。与原始 NiFe 相比,获得的最佳 NiFe 等离子体催化剂产生的电流密度增加了 12.5 倍(从 80 到 ∼1,000 mA cm -2) 在 300 mV 的过电位下,在碱性溶液中超过了大多数 OER 催化剂。密度泛函理论计算表明,氧空位的引入提高了本征活性和电子电导率,而有限元方法计算表明,催化界面的构建和纳米级传输通道的创建促进了传质。