当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lactate and Ethanol Chain Elongation in the Presence of Lactose: Insight into Product Selectivity and Microbiome Composition
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2022-03-07 , DOI: 10.1021/acssuschemeng.1c05869 Anna Duber 1 , Roman Zagrodnik 2 , Natalia Gutowska 1 , Mateusz Łężyk 1 , Piotr Oleskowicz-Popiel 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2022-03-07 , DOI: 10.1021/acssuschemeng.1c05869 Anna Duber 1 , Roman Zagrodnik 2 , Natalia Gutowska 1 , Mateusz Łężyk 1 , Piotr Oleskowicz-Popiel 1
Affiliation
Organic waste streams rich in carbohydrates are costly to treat; however, they can be valorized to commodity chemicals such as medium-chain carboxylic acids (MCCAs), for example, caproic acid. Simple carbohydrates are easily fermentable, providing different intermediates for competing bacterial groups, which may lead to product diversification. For that reason, it is essential to understand the impact of sugar fermentation on chain elongation (CE) in the presence of key electron donors to control the biochemical pathways for MCCAs production. The research provides an insight into the impact of co-fermentation of lactose with lactate and ethanol as electron donors on CE and process selectivity in open culture fermentation. Co-fermentation of lactose with ethanol led mostly to acetogenesis and development of the Clostridium genus, while co-fermentation of lactose with solely lactate or with both electron donors activated the propionate production and diversified the process outcome to mix short- and medium-chain carboxylates. The highest caproate production efficiency and selectivity were achieved (53 and 65%, respectively) when lactose in the presence of lactate were used; CE improved with a higher initial lactose load. Interestingly, the microbiome was highly enriched in members of the Bacillaceae family, which was not reported before.
中文翻译:
乳糖存在下的乳酸和乙醇链伸长:洞察产品选择性和微生物组组成
富含碳水化合物的有机废物流处理成本很高;但是,它们可以用于商品化学品,例如中链羧酸 (MCCA),例如己酸。简单的碳水化合物很容易发酵,为竞争的细菌群提供不同的中间体,这可能导致产品多样化。因此,在关键电子供体存在的情况下,了解糖发酵对链伸长 (CE) 的影响以控制 MCCA 生产的生化途径至关重要。该研究深入了解了乳糖与乳酸和乙醇作为电子供体共同发酵对开放培养发酵中 CE 和工艺选择性的影响。乳糖与乙醇的共同发酵主要导致了产酸和梭状芽胞杆菌的发育属,而乳糖与单独的乳酸或与两个电子供体的共同发酵激活了丙酸的产生并使过程结果多样化以混合短链和中链羧酸盐。在乳酸存在下使用乳糖时,己酸生产效率和选择性最高(分别为 53% 和 65%);CE 随着较高的初始乳糖负荷而得到改善。有趣的是,微生物组在芽孢杆菌科的成员中高度富集,这在以前没有报道过。
更新日期:2022-03-07
中文翻译:
乳糖存在下的乳酸和乙醇链伸长:洞察产品选择性和微生物组组成
富含碳水化合物的有机废物流处理成本很高;但是,它们可以用于商品化学品,例如中链羧酸 (MCCA),例如己酸。简单的碳水化合物很容易发酵,为竞争的细菌群提供不同的中间体,这可能导致产品多样化。因此,在关键电子供体存在的情况下,了解糖发酵对链伸长 (CE) 的影响以控制 MCCA 生产的生化途径至关重要。该研究深入了解了乳糖与乳酸和乙醇作为电子供体共同发酵对开放培养发酵中 CE 和工艺选择性的影响。乳糖与乙醇的共同发酵主要导致了产酸和梭状芽胞杆菌的发育属,而乳糖与单独的乳酸或与两个电子供体的共同发酵激活了丙酸的产生并使过程结果多样化以混合短链和中链羧酸盐。在乳酸存在下使用乳糖时,己酸生产效率和选择性最高(分别为 53% 和 65%);CE 随着较高的初始乳糖负荷而得到改善。有趣的是,微生物组在芽孢杆菌科的成员中高度富集,这在以前没有报道过。