当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bipolar Membrane Electrodialysis for Cleaner Production of Gluconic Acid: Valorization of the Regenerated Base for the Upstream Enzyme Catalysis
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2022-01-31 , DOI: 10.1021/acs.iecr.1c04657 Huangying Wang 1 , Junying Yan 1 , Rong Fu 1 , Haiyang Yan 1 , Chenxiao Jiang 1 , Yaoming Wang 1 , Tongwen Xu 1
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2022-01-31 , DOI: 10.1021/acs.iecr.1c04657 Huangying Wang 1 , Junying Yan 1 , Rong Fu 1 , Haiyang Yan 1 , Chenxiao Jiang 1 , Yaoming Wang 1 , Tongwen Xu 1
Affiliation
Bipolar membrane electrodialysis (BMED) is an environmentally friendly, high-effective technique for the cleaner production of gluconic acid. However, the unsatisfactory purity and low concentration of the regenerated base limit the applicable field of the byproduct for further utilization. In this study, BMED was applied for the cleaner production of gluconic acid from the perspective of the regenerated base. First, four types of cation-exchange membrane were screened for the BMED process by evaluating the performances of current efficiency, purity of regenerated base, and energy consumption. The BMED performances follow the order of CMX > TWEDC > CJMC-5 > CJMC-3. Furthermore, the effects of current density, the volume ratio between salt and base compartment on the BMED performances were optimized. A high base purity of 96.6% was obtained at a current density of 40 mA/cm2, while a high base concentration of 4.58 mol/L could be reached by applying a high volume ratio of 5:1 between the salt and base compartment. Moreover, the mechanism on the leakage of organic salts into the regenerated base was elucidated. The purity of the regenerated base was attributed to diffusion and electromigration. Diffusion dialysis experiments demonstrated that the permeability of gluconate through the CMX was 4.7 times of that through the BP-1. It was also found that the leakage of gluconate into the base could be alleviated at a low current density ranging from 20 to 50 mA/cm2. Finally, the regenerated base was subjected to the enzyme catalyst experiment for conversion of glucose into gluconate. This proof-of-concept study demonstrates that the regenerated base from the BMED process could be valorized to the upstream route for a closed-loop cleaner production.
中文翻译:
用于葡萄糖酸清洁生产的双极膜电渗析:上游酶催化再生碱的增值
双极膜电渗析(BMED)是一种环保、高效的葡萄糖酸清洁生产技术。但再生碱的纯度不理想、浓度低,限制了副产物进一步利用的应用领域。本研究从再生碱的角度将BMED应用于葡萄糖酸的清洁生产。首先,通过评估电流效率、再生碱纯度和能耗的性能,筛选出四种类型的阳离子交换膜用于 BMED 工艺。BMED性能按照CMX > TWEDC > CJMC-5 > CJMC-3的顺序。此外,还优化了电流密度、盐和碱室之间的体积比对 BMED 性能的影响。96 的高碱纯度。如图2所示,通过在盐和碱隔室之间应用 5:1 的高体积比可以达到 4.58 mol/L 的高碱浓度。此外,阐明了有机盐泄漏到再生碱中的机制。再生碱的纯度归因于扩散和电迁移。扩散透析实验表明葡萄糖酸盐通过CMX的渗透性是通过BP-1的4.7倍。还发现在 20 到 50 mA/cm 2的低电流密度范围内可以缓解葡萄糖酸盐泄漏到碱中。. 最后,对再生碱进行酶催化实验,将葡萄糖转化为葡萄糖酸盐。这项概念验证研究表明,来自 BMED 工艺的再生碱可用于闭环清洁生产的上游路线。
更新日期:2022-01-31
中文翻译:
用于葡萄糖酸清洁生产的双极膜电渗析:上游酶催化再生碱的增值
双极膜电渗析(BMED)是一种环保、高效的葡萄糖酸清洁生产技术。但再生碱的纯度不理想、浓度低,限制了副产物进一步利用的应用领域。本研究从再生碱的角度将BMED应用于葡萄糖酸的清洁生产。首先,通过评估电流效率、再生碱纯度和能耗的性能,筛选出四种类型的阳离子交换膜用于 BMED 工艺。BMED性能按照CMX > TWEDC > CJMC-5 > CJMC-3的顺序。此外,还优化了电流密度、盐和碱室之间的体积比对 BMED 性能的影响。96 的高碱纯度。如图2所示,通过在盐和碱隔室之间应用 5:1 的高体积比可以达到 4.58 mol/L 的高碱浓度。此外,阐明了有机盐泄漏到再生碱中的机制。再生碱的纯度归因于扩散和电迁移。扩散透析实验表明葡萄糖酸盐通过CMX的渗透性是通过BP-1的4.7倍。还发现在 20 到 50 mA/cm 2的低电流密度范围内可以缓解葡萄糖酸盐泄漏到碱中。. 最后,对再生碱进行酶催化实验,将葡萄糖转化为葡萄糖酸盐。这项概念验证研究表明,来自 BMED 工艺的再生碱可用于闭环清洁生产的上游路线。