当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Detailed Insight into the CZTS/CdS Interface Modification by Air Annealing in Monograin Layer Solar Cells
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-10-25 , DOI: 10.1021/acsaem.1c02186 Marit Kauk-Kuusik 1 , Kristi Timmo 1 , Katri Muska 1 , Maris Pilvet 1 , Jüri Krustok 2 , Raavo Josepson 2 , Guy Brammertz 3 , Bart Vermang 3 , Mati Danilson 1 , Maarja Grossberg 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2021-10-25 , DOI: 10.1021/acsaem.1c02186 Marit Kauk-Kuusik 1 , Kristi Timmo 1 , Katri Muska 1 , Maris Pilvet 1 , Jüri Krustok 2 , Raavo Josepson 2 , Guy Brammertz 3 , Bart Vermang 3 , Mati Danilson 1 , Maarja Grossberg 1
Affiliation
Relatively fast achievements in the kesterite solar cell technology have been made over the last decade, but the experimental efficiency is still ∼13%. One proposed reason is an inappropriate band alignment with Cu2ZnSnS4 (CZTS) and CdS that results in strong interface recombination losses. Results of this work show that the temperature and duration of air annealing of the CZTS/CdS heterojunction are essential for device performance. Soft annealing slightly improved the device efficiency due to the elemental intermixing at the interface. On the other hand, extended annealing increased absorber band gap energy, resulting in higher VOC values, indicating the improved Cu–Zn ordering in the CZTS structure, which also could be expected to have a beneficial influence on the device performance. However, interface analysis revealed that the CZTS absorber surface layer was Cu-rich, providing the reason for the reduction in CZTS solar cell performance. The effect of annealing on the interface defects was analyzed by the capacitance–frequency–voltage (C–V–f) analysis combined with SCAPS simulations. C–V–f-based loss maps showed that air annealing modifies the density distribution of asymmetrical interface states at the CZTS/CdS interface, which becomes fully symmetrical for longer annealing times at 200 °C.
中文翻译:
通过空气退火在单晶层太阳能电池中对 CZTS/CdS 界面改性的详细了解
在过去的十年中,黄铜矿太阳能电池技术取得了相对较快的成就,但实验效率仍约为 13%。提出的一个原因是与 Cu 2 ZnSnS 4 (CZTS) 和 CdS的不适当的能带对齐,导致强烈的界面复合损失。这项工作的结果表明,CZTS/CdS 异质结的空气退火温度和持续时间对器件性能至关重要。由于界面处的元素混合,软退火略微提高了器件效率。另一方面,延长退火增加了吸收带隙能量,导致更高的V OC值,表明 CZTS 结构中改善的 Cu-Zn 排序,这也有望对器件性能产生有益影响。然而,界面分析表明 CZTS 吸收体表面层富含铜,这是 CZTS 太阳能电池性能降低的原因。通过电容-频率-电压(C-V-f)分析结合SCAPS模拟来分析退火对界面缺陷的影响。基于C-V-f的损耗图表明,空气退火改变了 CZTS/CdS 界面处不对称界面态的密度分布,在 200 °C 下退火时间越长,它变得完全对称。
更新日期:2021-11-22
中文翻译:
通过空气退火在单晶层太阳能电池中对 CZTS/CdS 界面改性的详细了解
在过去的十年中,黄铜矿太阳能电池技术取得了相对较快的成就,但实验效率仍约为 13%。提出的一个原因是与 Cu 2 ZnSnS 4 (CZTS) 和 CdS的不适当的能带对齐,导致强烈的界面复合损失。这项工作的结果表明,CZTS/CdS 异质结的空气退火温度和持续时间对器件性能至关重要。由于界面处的元素混合,软退火略微提高了器件效率。另一方面,延长退火增加了吸收带隙能量,导致更高的V OC值,表明 CZTS 结构中改善的 Cu-Zn 排序,这也有望对器件性能产生有益影响。然而,界面分析表明 CZTS 吸收体表面层富含铜,这是 CZTS 太阳能电池性能降低的原因。通过电容-频率-电压(C-V-f)分析结合SCAPS模拟来分析退火对界面缺陷的影响。基于C-V-f的损耗图表明,空气退火改变了 CZTS/CdS 界面处不对称界面态的密度分布,在 200 °C 下退火时间越长,它变得完全对称。