Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Highly Sensitive Capacitive Flexible Pressure Sensor Based on a High-Permittivity MXene Nanocomposite and 3D Network Electrode for Wearable Electronics
ACS Sensors ( IF 8.2 ) Pub Date : 2021-07-06 , DOI: 10.1021/acssensors.1c00484 Long Zhang 1, 2 , Shaohui Zhang 1, 2 , Chao Wang 1 , Quan Zhou 1, 2 , Haifeng Zhang 1 , Ge-Bo Pan 1, 2
ACS Sensors ( IF 8.2 ) Pub Date : 2021-07-06 , DOI: 10.1021/acssensors.1c00484 Long Zhang 1, 2 , Shaohui Zhang 1, 2 , Chao Wang 1 , Quan Zhou 1, 2 , Haifeng Zhang 1 , Ge-Bo Pan 1, 2
Affiliation
With the fast development of consumer electronic and artificial intelligence equipment, flexible pressure sensors (FPSs) have become a momentous component in the application of wearable electronic, electronic skin, and human–machine interfacing. The capacitive FPS possesses the merits of low energy consumption, high resolution, and fast dynamic response, so it is ideal for mobile and wearable electronics. However, capacitive FPS is vulnerable to electromagnetic interference and parasitic capacitance due to its low sensitivity. Microstructure or porous dielectric materials have been applied to improve the sensitivity of the capacitive FPS, but the high sensitivity is just limited to a narrow region. In this work, we propose a different strategy that incorporates a high-permittivity MXene nanocomposite dielectric with a 3D network electrode (3DNE) to improve the sensing performance of the capacitive FPS. Thanks to the high permittivity of the dielectric layer and hierarchical deformation of the electrode, the fabricated capacitive FPS exhibits a high sensitivity of 10.2 kPa–1 in the low pressure range (0–8.6 kPa) and still maintains a relatively high sensitivity of 3.65 kPa–1 with a near-linear response in a wide pressure range (8.6–100 kPa). In addition, the capacitive FPS can withstand over 20,000 times pressure loads without significant signal damping. Furthermore, the working mechanism of the capacitive FPS is illustrated by the finite element analysis (FEA) method and theoretical calculation. The application potential of the sensor in wearable electronics was demonstrated by human pulse wave monitoring and pressure mapping tests with a 4 × 6 sensor microarray.
中文翻译:
基于高介电常数 MXene 纳米复合材料和用于可穿戴电子设备的 3D 网络电极的高灵敏度电容柔性压力传感器
随着消费电子和人工智能设备的快速发展,柔性压力传感器(FPS)已成为可穿戴电子、电子皮肤和人机交互应用中的重要组成部分。电容式FPS具有能耗低、分辨率高、动态响应快等优点,是移动和可穿戴电子产品的理想选择。然而,电容式 FPS 灵敏度低,容易受到电磁干扰和寄生电容的影响。微结构或多孔介电材料已被应用于提高电容性 FPS 的灵敏度,但高灵敏度仅限于狭窄的区域。在这项工作中,我们提出了一种不同的策略,将高介电常数 MXene 纳米复合电介质与 3D 网络电极 (3DNE) 相结合,以提高电容 FPS 的传感性能。由于介电层的高介电常数和电极的分层变形,制造的电容 FPS 表现出 10.2 kPa 的高灵敏度–1在低压范围 (0–8.6 kPa) 中,并且仍然保持 3.65 kPa –1的相对较高的灵敏度,在宽压力范围 (8.6–100 kPa) 内具有近线性响应。此外,电容式 FPS 可以承受超过 20,000 倍的压力负载,而不会出现明显的信号阻尼。此外,通过有限元分析(FEA)方法和理论计算说明了电容式FPS的工作机制。传感器在可穿戴电子产品中的应用潜力通过人体脉搏波监测和压力映射测试与 4 × 6 传感器微阵列进行了证明。
更新日期:2021-07-23
中文翻译:
基于高介电常数 MXene 纳米复合材料和用于可穿戴电子设备的 3D 网络电极的高灵敏度电容柔性压力传感器
随着消费电子和人工智能设备的快速发展,柔性压力传感器(FPS)已成为可穿戴电子、电子皮肤和人机交互应用中的重要组成部分。电容式FPS具有能耗低、分辨率高、动态响应快等优点,是移动和可穿戴电子产品的理想选择。然而,电容式 FPS 灵敏度低,容易受到电磁干扰和寄生电容的影响。微结构或多孔介电材料已被应用于提高电容性 FPS 的灵敏度,但高灵敏度仅限于狭窄的区域。在这项工作中,我们提出了一种不同的策略,将高介电常数 MXene 纳米复合电介质与 3D 网络电极 (3DNE) 相结合,以提高电容 FPS 的传感性能。由于介电层的高介电常数和电极的分层变形,制造的电容 FPS 表现出 10.2 kPa 的高灵敏度–1在低压范围 (0–8.6 kPa) 中,并且仍然保持 3.65 kPa –1的相对较高的灵敏度,在宽压力范围 (8.6–100 kPa) 内具有近线性响应。此外,电容式 FPS 可以承受超过 20,000 倍的压力负载,而不会出现明显的信号阻尼。此外,通过有限元分析(FEA)方法和理论计算说明了电容式FPS的工作机制。传感器在可穿戴电子产品中的应用潜力通过人体脉搏波监测和压力映射测试与 4 × 6 传感器微阵列进行了证明。