当前位置:
X-MOL 学术
›
Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties
Chemical Reviews ( IF 51.4 ) Pub Date : 2021-04-12 , DOI: 10.1021/acs.chemrev.0c01088 Xuanhe Zhao 1, 2 , Xiaoyu Chen 1 , Hyunwoo Yuk 1 , Shaoting Lin 1 , Xinyue Liu 1 , German Parada 1
Chemical Reviews ( IF 51.4 ) Pub Date : 2021-04-12 , DOI: 10.1021/acs.chemrev.0c01088 Xuanhe Zhao 1, 2 , Xiaoyu Chen 1 , Hyunwoo Yuk 1 , Shaoting Lin 1 , Xinyue Liu 1 , German Parada 1
Affiliation
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels’ diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
中文翻译:
设计的软材料:非常规聚合物网络具有极端特性
水凝胶是被水渗透的聚合物网络。动物体内的许多生物水凝胶,如肌肉、心脏瓣膜、软骨和肌腱,都具有极高的机械性能,包括极其坚韧、强韧、有弹性、粘性和抗疲劳。这些机械性能对于水凝胶的各种应用也至关重要,从药物输送、组织工程、医疗植入物、伤口敷料和隐形眼镜到传感器、执行器、电子设备、光学设备、电池、集水器和软机器人。尽管在过去的几十年中已经开发了许多水凝胶,但一套可以合理地指导使用不同材料和制造方法进行水凝胶设计以用于各种应用的一般原则仍然是软材料领域的核心需求。非常规聚合物网络,以及(iii)水凝胶正交设计的未来方向,以实现多种组合的机械、物理、化学和生物特性。由于这些设计原则和实施策略基于通用聚合物网络,因此它们也适用于其他软材料,包括弹性体和有机凝胶。总体而言,该综述不仅将为软材料的合理设计提供全面和系统的指导,还将引发跨学科讨论一个基本问题:为什么大自然会选择具有非常规聚合物网络的软材料来构成动物身体的主要部分?
更新日期:2021-04-29
中文翻译:
设计的软材料:非常规聚合物网络具有极端特性
水凝胶是被水渗透的聚合物网络。动物体内的许多生物水凝胶,如肌肉、心脏瓣膜、软骨和肌腱,都具有极高的机械性能,包括极其坚韧、强韧、有弹性、粘性和抗疲劳。这些机械性能对于水凝胶的各种应用也至关重要,从药物输送、组织工程、医疗植入物、伤口敷料和隐形眼镜到传感器、执行器、电子设备、光学设备、电池、集水器和软机器人。尽管在过去的几十年中已经开发了许多水凝胶,但一套可以合理地指导使用不同材料和制造方法进行水凝胶设计以用于各种应用的一般原则仍然是软材料领域的核心需求。非常规聚合物网络,以及(iii)水凝胶正交设计的未来方向,以实现多种组合的机械、物理、化学和生物特性。由于这些设计原则和实施策略基于通用聚合物网络,因此它们也适用于其他软材料,包括弹性体和有机凝胶。总体而言,该综述不仅将为软材料的合理设计提供全面和系统的指导,还将引发跨学科讨论一个基本问题:为什么大自然会选择具有非常规聚合物网络的软材料来构成动物身体的主要部分?