了解根源养分吸收策略及其驱动因素对于在恢复的生态系统中探索植物养分获取策略至关重要。然而,在恢复的生态系统中,根系养分吸收与根际土壤微生物养分利用之间的相互作用尚待确定。在这项研究中,我们调查了刺槐的植物细根和根际土壤黄土高原森林演替的四个阶段(分别为14、20、30和45岁)。我们研究了不同恢复阶段的根系氮和磷吸收效率(NRE和PRE)特征,并分析了养分吸收与根际土壤变量(养分和微生物群落)之间的关系。我们发现随着年龄的增长,根部NRE和PRE有一个初始减少和随后增加的趋势(最低值在30年位点),而根际土壤中的根际土壤养分含量随着年龄的增长而增加,而土壤有效养分则先增加然后增加。拒绝了。根际土壤微生物的多样性也显示出先增加后减少的趋势。蛋白质细菌被认为在营养丰富的恢复阶段(30年位点)处于优势地位,而酸性细菌被发现在营养低的恢复阶段(14年的位点)处于优势地位。此外,土壤微生物生物量碳:土壤有机碳,微生物生物量氮:土壤总氮和微生物生物量磷:土壤总磷的微生物养分利用率也表现出先升高后降低的趋势(在30 y点出现峰值) )。冗余分析表明,根际土壤养分含量与微生物群落显着相关,相关分析表明,微生物的养分利用效率与根际土壤养分含量和主要微生物群落显着相关。我们还检测到根部养分吸收与微生物养分利用之间存在显着的负相关性。偏最小二乘路径模型表明,森林恢复影响根际土壤养分含量和微生物群落组成,而微生物量和养分利用效率对根系吸收效率有负面影响。根据我们的发现,我们认为根际土壤微生物群落的高度保守的养分利用策略可能在根系演替期间对根系养分吸收策略产生负面影响。偏最小二乘路径模型分析表明,森林恢复影响根际土壤养分含量和微生物群落组成,而微生物量和养分利用效率对根系吸收效率有负面影响。根据我们的发现,我们认为根际土壤微生物群落的高度保守的养分利用策略可能在根系演替期间对根系养分吸收策略产生负面影响。偏最小二乘路径模型表明,森林恢复影响根际土壤养分含量和微生物群落组成,而微生物量和养分利用效率对根系吸收效率有负面影响。根据我们的发现,我们认为根际土壤微生物群落的高度保守的养分利用策略可能在根系演替期间对根系养分吸收策略产生负面影响。R. pseudoacacia。
"点击查看英文标题和摘要"
Response of root nutrient resorption strategies to rhizosphere soil microbial nutrient utilization along Robinia pseudoacacia plantation chronosequence
Understanding root nutrient resorption strategies and their drivers is essential to explore plant nutrient acquisition strategies in restored ecosystems. However, the interaction between root nutrient resorption and the nutrient utilization of rhizosphere soil microorganisms in restored ecosystems has yet to be determined. In this study, we investigated plant fine roots and rhizosphere soils in Robinia pseudoacacia plantations at four stages of forest succession (14, 20, 30, and 45 years of age) on the Loess Plateau in China. We studied the characteristics of root nitrogen and phosphorus resorption efficiencies (NRE and PRE) at different recovery stages and analyzed the relationships among nutrient resorption and rhizosphere soil variables (nutrients and microbial communities). We detected a tendency of an initial reduction and subsequent increase in root NRE and PRE with stand age (the lowest value at 30-y sites), whereas the nutrient contents of rhizosphere soil increased with stand age, and soil available nutrients initially increased and then declined. The diversity of rhizosphere soil microorganisms also showed an initial increase and subsequent decline. Proteobacteria were considered to be at an advantage during the nutrient-rich stage of restoration (30-y sites), whereas Acidobacteria were found to be dominant during the low-nutrient restoration stage (14-y sites). Furthermore, the microbial nutrient utilization ratios of soil microbial biomass carbon: soil organic carbon, microbial biomass nitrogen: soil total nitrogen, and microbial biomass phosphorus: soil total phosphorus also showed an initial increase and then decreased (with peaks at the 30-y sites). Redundancy analysis indicated that the nutrient contents of rhizosphere soil were significantly related to microbial communities and correlation analysis revealed that microbial nutrient-use efficiencies were significantly related to rhizosphere soil nutrient contents and the dominant microbial communities. We also detected a significant negative correlation between root nutrient resorption and microbial nutrient utilization. Partial least squares path modeling revealed that forest restoration influences the contents of nutrients in rhizosphere soil and the composition of microbial communities, whereas microbial biomass and nutrient utilization efficiency were shown to have a negative effect on root resorption efficiency. Based on our findings, we propose that the highly conservative nutrient utilization strategies of the rhizosphere soil microbial community may negatively drive root nutrient resorption strategies during the succession of R. pseudoacacia.