当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-Atom Rhodium on Defective g-C3N4: A Promising Bifunctional Oxygen Electrocatalyst
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-02-19 , DOI: 10.1021/acssuschemeng.0c09192
Huan Niu 1 , Xuhao Wan 1 , Xiting Wang 1 , Chen Shao 1 , John Robertson 1 , Zhaofu Zhang 2 , Yuzheng Guo 1
Affiliation  

It is highly desirable to design bifunctional electrocatalysts to realize highly efficient oxygen evolution/reduction reaction (OER/ORR). Herein, density functional theory (DFT) calculations were conducted to validate the feasibility of a single transition metal (TM) embedded in defective g-C3N4 for bifunctional oxygen electrocatalysis. It was clarified that the TM atom supported on defective g-C3N4 with N vacancy (TM/VN-CN) was stable and possible to be synthesized. Remarkably, Rh/VN-CN exhibited low overpotentials of 0.32 and 0.43 V for OER and ORR, respectively, and was considered as the promising bifunctional catalyst. The volcano plots and contour maps were established based on the scaling relation of adsorption energies of *OH, *O, and *OOH. The OER/ORR activity origin was revealed by descriptors of the d-band center and the number of d-orbital electrons multiplied electronegativity of TM. Furthermore, the machine learning (ML) algorithm was utilized to analyze the intrinsic correlation between catalytic activity and a series of structural and atomic features. Our combined DFT and ML work not only opts for the promising bifunctional oxygen electrocatalysts but also provides guidance for the design of single-atom catalysts and the discovery of more efficient catalysts.

中文翻译:

gC 3 N 4缺陷的单原子铑:有望的双功能氧电催化剂

设计双功能电催化剂以实现高效的氧释放/还原反应(OER / ORR)是非常合乎需要的。本文中,进行密度泛函理论(DFT)计算以验证嵌入在有缺陷的gC 3 N 4中的单一过渡金属(TM)用于双功能氧电催化的可行性。明确了以空位为N(TM / V N -CN)负载在有缺陷的gC 3 N 4上的TM原子是稳定的并且可以合成。显着地,Rh / V N-CN对OER和ORR分别显示出0.32和0.43 V的低过电势,被认为是有前途的双功能催化剂。根据* OH,* O和* OOH的吸附能的比例关系,建立了火山图和等高线图。OER / ORR活性的起源是通过d谱带中心的描述和d轨道电子数乘以TM的电负性来揭示的。此外,利用机器学习(ML)算法来分析催化活性与一系列结构和原子特征之间的内在联系。我们结合DFT和ML进行的研究不仅选择了有前途的双功能氧电催化剂,而且还为设计单原子催化剂和发现更高效的催化剂提供了指导。
更新日期:2021-03-08
down
wechat
bug