当前位置:
X-MOL 学术
›
Crime and Justice
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preface
Crime and Justice ( IF 3.6 ) Pub Date : 2018-01-01 , DOI: 10.1086/697679 Michael Tonry
Crime and Justice ( IF 3.6 ) Pub Date : 2018-01-01 , DOI: 10.1086/697679 Michael Tonry
The process by which a massive compact object (like white dwarfs, neutron stars, black holes etc) gravitationally captures ambient matter is called accretion. The accretion of matter on to a compact massive star is the likely source of energy in the observed binary X-ray sources. Since black holes are ‘black’, there cannot be any direct observational evidence of them. Thus they must be observed by detecting the radiations emitted by accreting matter. For typical gas dynamical conditions found in the interstellar medium and in the matter exchanged between the binary stars, it is expected that accretion flows on to compact objects will be hydrodynamical or magneto-hydrodynamical in nature. Thus, to study black hole accretion, it is necessary to know the hydrodynamic properties of the flow of the matter as it is the matter which, after all, will emit the radiation that we detect by satellites. The variation of thermodynamic quantities such as the initial energy density of the accreted matter plays important roles as the emitted radiation intensity from the flow depends on the density and the temperature at each point of the flow at each moment of time. So the spectral and temporal properties of emitted radiations are directly determined by the hydrodynamical variables. In my Ph.D. work, I mainly made effort to study the hydrodynamic properties of the flow and its stability properties through time-dependent numerical simulations. We started with time-dependent solutions of one-dimensional (spherically symmetric) and two-dimensional (axially symmetric) accretion flows around compact objects, in particular black holes, after examining the steady-state solutions. We describe the development of a two-dimensional hydrodynamic code and its application to various astrophysical problems. A FORTRAN code for two-dimensional numerical hydrodynamics has been developed to model viscous accretion discs. We employ a grid-based finite difference method called the total variation diminishing method (TVD). The effective shear viscosity present in the code is evaluated. The simulations were carried out for flows in the Schwarzschild geometry. By numerical simulation, we show that the theoretical solutions (with or without shocks) which are claimed to be stationary are indeed so. When the shocks are absent, they show steady oscillations. Our survey was carried out using the entire inflow parameter space spanned by the specific energy, angular momentum, shear viscosity and a
中文翻译:
前言
巨大的紧凑物体(如白矮星,中子星,黑洞等)在重力作用下捕获环境物质的过程称为吸积。物质在紧凑的大质量恒星上的积聚是观察到的双星X射线源中可能的能量来源。由于黑洞是“黑洞”,因此没有任何直接的观察证据。因此,必须通过检测由增生物质发出的辐射来观察它们。对于在星际介质中以及在双星之间交换的物质中发现的典型气体动力学条件,可以预期,流到致密物体上的吸积物本质上将是流体动力学的或磁流体动力学的。因此,为了研究黑洞的积聚,有必要了解物质流的流体动力学特性,因为它毕竟是物质,会发出我们通过卫星检测到的辐射。热力学量的变化(例如,堆积物的初始能量密度)起着重要作用,因为从流中发出的辐射强度取决于每个时间点上流的每个点的密度和温度。因此,所发射辐射的光谱和时间特性直接由流体力学变量确定。在我的博士学位 在工作中,我主要致力于通过与时间有关的数值模拟研究流动的流体动力学特性及其稳定性。在研究了稳态解之后,我们从围绕时间的一维(球对称)和二维(轴对称)吸积流围绕紧凑物体(特别是黑洞)的解开始。我们描述了二维流体力学代码的发展及其在各种天体物理问题中的应用。已经开发出用于二维数值流体动力学的FORTRAN代码,以对粘性吸积盘进行建模。我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们证明了声称是静止的理论解(有或没有冲击)确实如此。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 已经开发出用于二维数值流体动力学的FORTRAN代码,以对粘性吸积盘进行建模。我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们证明了声称是静止的理论解(有或没有冲击)确实如此。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 已经开发出用于二维数值流体动力学的FORTRAN代码,以对粘性吸积盘进行建模。我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们表明声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们证明了声称是静止的理论解(有或没有冲击)确实如此。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们表明声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们表明,声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们表明,声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和
更新日期:2018-01-01
中文翻译:
前言
巨大的紧凑物体(如白矮星,中子星,黑洞等)在重力作用下捕获环境物质的过程称为吸积。物质在紧凑的大质量恒星上的积聚是观察到的双星X射线源中可能的能量来源。由于黑洞是“黑洞”,因此没有任何直接的观察证据。因此,必须通过检测由增生物质发出的辐射来观察它们。对于在星际介质中以及在双星之间交换的物质中发现的典型气体动力学条件,可以预期,流到致密物体上的吸积物本质上将是流体动力学的或磁流体动力学的。因此,为了研究黑洞的积聚,有必要了解物质流的流体动力学特性,因为它毕竟是物质,会发出我们通过卫星检测到的辐射。热力学量的变化(例如,堆积物的初始能量密度)起着重要作用,因为从流中发出的辐射强度取决于每个时间点上流的每个点的密度和温度。因此,所发射辐射的光谱和时间特性直接由流体力学变量确定。在我的博士学位 在工作中,我主要致力于通过与时间有关的数值模拟研究流动的流体动力学特性及其稳定性。在研究了稳态解之后,我们从围绕时间的一维(球对称)和二维(轴对称)吸积流围绕紧凑物体(特别是黑洞)的解开始。我们描述了二维流体力学代码的发展及其在各种天体物理问题中的应用。已经开发出用于二维数值流体动力学的FORTRAN代码,以对粘性吸积盘进行建模。我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们证明了声称是静止的理论解(有或没有冲击)确实如此。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 已经开发出用于二维数值流体动力学的FORTRAN代码,以对粘性吸积盘进行建模。我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们证明了声称是静止的理论解(有或没有冲击)确实如此。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 已经开发出用于二维数值流体动力学的FORTRAN代码,以对粘性吸积盘进行建模。我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们表明声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们证明了声称是静止的理论解(有或没有冲击)确实如此。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们采用了基于网格的有限差分方法,称为总变化减小法(TVD)。评估代码中存在的有效剪切粘度。对Schwarzschild几何形状中的流动进行了模拟。通过数值模拟,我们表明声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们表明,声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和 我们表明,声称是静止的理论解(有或没有冲击)确实是这样。当没有震动时,它们会显示出稳定的振荡。我们的调查是使用整个流入参数空间进行的,该空间由比能,角动量,剪切粘度和