当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Polymerized Conjugated Poly(pyrene‐4,5,9,10‐tetraone)/Carbon Nanotubes Composites for High‐Performance Cathode of Sodium Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-12-31 , DOI: 10.1002/aenm.202002917 Ruijuan Shi 1 , Luojia Liu 1 , Yong Lu 1 , Yixin Li 1 , Shibing Zheng 1 , Zhenhua Yan 1 , Kai Zhang 1 , Jun Chen 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2020-12-31 , DOI: 10.1002/aenm.202002917 Ruijuan Shi 1 , Luojia Liu 1 , Yong Lu 1 , Yixin Li 1 , Shibing Zheng 1 , Zhenhua Yan 1 , Kai Zhang 1 , Jun Chen 1
Affiliation
Sodium batteries have attracted much attention in recent years because of their comprehensive electrochemical performance, high abundance, and low cost of sodium resources. However, the unsatisying energy density and poor cycling stability of current sodium batteries restrict their large‐scale applications. Here an in situ polymerization method to construct π‐conjugated poly(pyrene‐4,5,9,10‐tetraone)/carbon nanotubes (PPTO–CNTs) composites as cathode materials for sodium batteries is used. It is found that the π–π interaction between PPTO and CNTs in PPTO–CNTs composites overcomes the repulsion between each PPTO unit, leading to a flat configuration of PPTO and enhancing the electronic conductivity and active sites accessibility of PPTO–CNTs composites. Thus, PPTO–CNTs electrodes display a high discharge capacity of 360.2 mAh g−1, long cycling stability (a capacity retention of 95.1% after 1300 cycles), and high rate capability (194.5 mAh g−1 at 10.0 A g−1). Moreover, a pouch‐type Na//PPTO–CNTs cell with an energy density of ≈204.0 Wh kg−1PPTO+Na is fabricated, exhibiting a capacity retention of 91.2% after 100 cycles. In addition, the combination of experiments and theoretical calculations demonstrates the four‐sodium‐ion redox chemistry mechanism of each PPTO molecule unit. This work should promote the practical application of conjugated polymers in high‐performance sodium batteries.
中文翻译:
用于高性能钠电池阴极的原位聚合共轭聚(py-4,5,9,10-四酮)/碳纳米管复合材料
钠电池由于其全面的电化学性能,高丰度和钠资源成本低廉,近年来引起了广泛的关注。然而,当前钠电池的令人不满意的能量密度和较差的循环稳定性限制了它们的大规模应用。在这里,使用原位聚合方法构建π-共轭聚(py-4,5,9,10-四酮)/碳纳米管(PPTO-CNTs)复合材料作为钠电池的阴极材料。研究发现,PPTO-CNTs复合材料中PPTO和CNT之间的π-π相互作用克服了每个PPTO单元之间的排斥,从而导致PPTO呈扁平状,并增强了PPTO-CNTs复合材料的电导率和活性位点可及性。因此,PPTO-CNTs电极显示出360.2 mAh g的高放电容量-1,长循环稳定性(1300次循环后95.1%的容量保持率)和高倍率性能(194.5毫安克-1 10.0 A G -1)。而且,随着能量密度的袋型的Na // PPTO-CNT的细胞≈ 204.0瓦千克-1 PPTO + NA被制造,100次循环后表现出91.2%的容量保持率。此外,实验和理论计算的结合证明了每个PPTO分子单元的四钠离子氧化还原化学机理。这项工作应促进共轭聚合物在高性能钠电池中的实际应用。
更新日期:2021-02-11
中文翻译:
用于高性能钠电池阴极的原位聚合共轭聚(py-4,5,9,10-四酮)/碳纳米管复合材料
钠电池由于其全面的电化学性能,高丰度和钠资源成本低廉,近年来引起了广泛的关注。然而,当前钠电池的令人不满意的能量密度和较差的循环稳定性限制了它们的大规模应用。在这里,使用原位聚合方法构建π-共轭聚(py-4,5,9,10-四酮)/碳纳米管(PPTO-CNTs)复合材料作为钠电池的阴极材料。研究发现,PPTO-CNTs复合材料中PPTO和CNT之间的π-π相互作用克服了每个PPTO单元之间的排斥,从而导致PPTO呈扁平状,并增强了PPTO-CNTs复合材料的电导率和活性位点可及性。因此,PPTO-CNTs电极显示出360.2 mAh g的高放电容量-1,长循环稳定性(1300次循环后95.1%的容量保持率)和高倍率性能(194.5毫安克-1 10.0 A G -1)。而且,随着能量密度的袋型的Na // PPTO-CNT的细胞≈ 204.0瓦千克-1 PPTO + NA被制造,100次循环后表现出91.2%的容量保持率。此外,实验和理论计算的结合证明了每个PPTO分子单元的四钠离子氧化还原化学机理。这项工作应促进共轭聚合物在高性能钠电池中的实际应用。