当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase Equilibria of Difluoromethane (R32), 1,1,1,2-Tetrafluoroethane (R134a), and trans-1,3,3,3-Tetrafluoro-1-propene (R1234ze(E)) Probed by Experimental Measurements and Monte Carlo Simulations
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2020-12-23 , DOI: 10.1021/acs.iecr.0c05442
Tao Yang 1, 2 , J. Ilja Siepmann 2, 3 , Jiangtao Wu 1
Affiliation  

The combination of difluoromethane (R32), 1,1,1,2-tetrafluoroethane (R134a), and trans-1,3,3,3-tetrafluoro-1-propene (R1234ze(E)) has been recently proposed as a potential substitute (R456A) for hydrofluorocarbon working fluids. For the design and process simulation of refrigeration systems using refrigerant mixtures, precise knowledge of their thermophysical properties, especially vapor–liquid equilibrium (VLE), is crucial. To extend the experimental temperature range, a liquid-recirculation analytical apparatus, classified as AnTLcirCapValVis, was redesigned and VLE data for the binary mixtures of R32 + R134a, R32 + R1234ze(E), R134a + R1234ze(E), and the ternary system of R32 + R134a + R1234ze(E) were measured over the temperature range from 263.15 to 323.15 K. The standard uncertainties of the temperature, pressure, and the mole fractions of liquid and vapor phases are estimated to be within 10 mK, 0.5 kPa, and 0.005, respectively. The Peng–Robinson–Stryjek–Vera–Version-2 (PRSV2) equation of state combined with the Wong–Sandler (WS) mixing rule and the nonrandom two-liquid activity coefficient model (NRTL) was used to fit the mixing parameters of the binary data from this work and prior studies and to predict the ternary VLE properties. In addition, Gibbs ensemble Monte Carlo simulations with an all-atom force field were carried out to determine VLE properties and to characterize the microscopic structure of these mixtures. Good agreement is found between experiments, correlations, and simulations, which attests to the predictive capabilities of the PRSV2 + WS + NRTL model and molecular simulations.

中文翻译:

通过实验测量和蒙特卡洛方法检测到二氟甲烷(R32),1,1,1,2-四氟乙烷(R134a)和反式-1,3,3,3-四氟-1-丙烯(R1234ze(E))的相平衡模拟

最近已提出将二氟甲烷(R32),1,1,1,2-四氟乙烷(R134a)和反式-1,3,3,3-四氟-1-丙烯(R1234ze(E))组合使用氢氟烃工作液的替代品(R456A)。对于使用制冷剂混合物的制冷系统的设计和过程仿真,至关重要的是准确了解其热物理性质,尤其是气液平衡(VLE)。为了扩展实验温度范围,使用了一种分类为AnTLcirCapValVis的液体再循环分析仪进行了重新设计,并在263.15的温度范围内测量了R32 + R134a,R32 + R1234ze(E),R134a + R1234ze(E)和R32 + R134a + R1234ze(E)三元体系的二元混合物的VLE数据到323.15K。温度,压力以及液相和气相的摩尔分数的标准不确定度分别在10 mK,0.5 kPa和0.005之内。结合了Wong-Sandler(WS)混合规则和非随机两液活度系数模型(NRTL)的Peng-Robinson-Stryjek-Vera-Version-2(PRSV2)状态方程来拟合混合气的混合参数。来自这项工作和先前研究的二进制数据,并预测三元VLE属性。此外,用全原子力场进行吉布斯合奏蒙特卡罗模拟,以确定VLE性质并表征这些混合物的微观结构。在实验,相关性和模拟之间找到了很好的一致性,这证明了PRSV2 + WS + NRTL模型和分子模拟的预测能力。
更新日期:2021-01-13
down
wechat
bug