当前位置:
X-MOL 学术
›
Colloids Surf. A Physicochem. Eng. Aspects
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Facile synthesis of microencapsulated 1-dodecanol/melamine-formaldehyde phase change material using in-situ polymerization for thermal energy storage
Colloids and Surfaces A: Physicochemical and Engineering Aspects ( IF 4.9 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.colsurfa.2020.125698 G. Naveen Kumar , Bader Al-Aifan , R. Parameshwaran , V. Vinayaka Ram
Colloids and Surfaces A: Physicochemical and Engineering Aspects ( IF 4.9 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.colsurfa.2020.125698 G. Naveen Kumar , Bader Al-Aifan , R. Parameshwaran , V. Vinayaka Ram
Abstract In this study, a new microencapsulated organic PCM (MicroPCM) was developed and its thermal energy storage (TES) properties were experimentally investigated. The microcapsules were prepared through a facile in-situ polymerization process using 1-dodecanol as the core PCM and the melamine-formaldehyde as the shell material. The microstructural analysis results infer that, the as-prepared microcapsules were spherical in shape, and the existence of carbon, oxygen and nitrogen elements have confirmed the effective formation of the MicroPCM. The average particle size (490.2 nm), surface roughness and with no chemical interaction between the core and the shell materials have paved way for achieving improved storage stability of the MicroPCM. The microcapsules with high thermal storage capability of 91.2 % have exhibited good latent heat of fusion of 79.45 kJ/kg. The microcapsules were thermally stable up to 132.82 °C, which was substantially higher than that of the operating temperature range of the pure PCM. The measured thermal conductivity of the MicroPCM was relatively lower (0.1727 W/m K) which has satisfied the thermal insulation criteria as well. The thermal cycling test conducted for microcapsules showed excellent thermal reliability (reliability index of 94.4 %). Also, no chemical interaction was observed between the core and the shell materials even after 200 heating/cooling process. Based on the test results, it is inferred that, the MicroPCM with enhanced properties can be a promising candidate for low temperature thermal energy storage.
中文翻译:
原位聚合用于热能储存的微囊化1-十二醇/三聚氰胺-甲醛相变材料的简便合成
摘要 本研究开发了一种新型微囊化有机相变材料(MicroPCM),并对其热能储存(TES)性能进行了实验研究。微胶囊是通过简单的原位聚合过程制备的,使用 1-十二醇作为核心 PCM 和三聚氰胺甲醛作为壳材料。微观结构分析结果表明,所制备的微胶囊为球形,碳、氧和氮元素的存在证实了MicroPCM的有效形成。平均粒径 (490.2 nm)、表面粗糙度以及核与壳材料之间没有化学相互作用为实现 MicroPCM 的储存稳定性的提高铺平了道路。具有91的高蓄热能力的微胶囊。2% 表现出良好的熔化潜热,为 79.45 kJ/kg。微胶囊的热稳定性高达 132.82 °C,大大高于纯 PCM 的工作温度范围。MicroPCM 测得的热导率相对较低 (0.1727 W/m K),这也满足绝热标准。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。这大大高于纯 PCM 的工作温度范围。MicroPCM 测得的热导率相对较低 (0.1727 W/m K),这也满足绝热标准。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。这大大高于纯 PCM 的工作温度范围。MicroPCM 测得的热导率相对较低 (0.1727 W/m K),这也满足绝热标准。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。
更新日期:2021-02-01
中文翻译:
原位聚合用于热能储存的微囊化1-十二醇/三聚氰胺-甲醛相变材料的简便合成
摘要 本研究开发了一种新型微囊化有机相变材料(MicroPCM),并对其热能储存(TES)性能进行了实验研究。微胶囊是通过简单的原位聚合过程制备的,使用 1-十二醇作为核心 PCM 和三聚氰胺甲醛作为壳材料。微观结构分析结果表明,所制备的微胶囊为球形,碳、氧和氮元素的存在证实了MicroPCM的有效形成。平均粒径 (490.2 nm)、表面粗糙度以及核与壳材料之间没有化学相互作用为实现 MicroPCM 的储存稳定性的提高铺平了道路。具有91的高蓄热能力的微胶囊。2% 表现出良好的熔化潜热,为 79.45 kJ/kg。微胶囊的热稳定性高达 132.82 °C,大大高于纯 PCM 的工作温度范围。MicroPCM 测得的热导率相对较低 (0.1727 W/m K),这也满足绝热标准。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。这大大高于纯 PCM 的工作温度范围。MicroPCM 测得的热导率相对较低 (0.1727 W/m K),这也满足绝热标准。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。这大大高于纯 PCM 的工作温度范围。MicroPCM 测得的热导率相对较低 (0.1727 W/m K),这也满足绝热标准。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。对微胶囊进行的热循环测试显示出优异的热可靠性(可靠性指数为 94.4%)。此外,即使在 200 次加热/冷却过程后,也没有观察到核和壳材料之间的化学相互作用。根据测试结果推断,具有增强性能的 MicroPCM 可以成为低温热能存储的有希望的候选者。