当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions.
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-06-19 , DOI: 10.1021/acs.est.0c01345 Ali Akherati 1 , Yicong He 1 , Matthew M Coggon 2, 3 , Abigail R Koss 4 , Anna L Hodshire 5 , Kanako Sekimoto 2 , Carsten Warneke 2, 3 , Joost de Gouw 6 , Lindsay Yee 7 , John H Seinfeld 8 , Timothy B Onasch 9 , Scott C Herndon 9 , Walter B Knighton 10 , Christopher D Cappa 11 , Michael J Kleeman 11 , Christopher Y Lim 4 , Jesse H Kroll 4 , Jeffrey R Pierce 5 , Shantanu H Jathar 1
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2020-06-19 , DOI: 10.1021/acs.est.0c01345 Ali Akherati 1 , Yicong He 1 , Matthew M Coggon 2, 3 , Abigail R Koss 4 , Anna L Hodshire 5 , Kanako Sekimoto 2 , Carsten Warneke 2, 3 , Joost de Gouw 6 , Lindsay Yee 7 , John H Seinfeld 8 , Timothy B Onasch 9 , Scott C Herndon 9 , Walter B Knighton 10 , Christopher D Cappa 11 , Michael J Kleeman 11 , Christopher Y Lim 4 , Jesse H Kroll 4 , Jeffrey R Pierce 5 , Shantanu H Jathar 1
Affiliation
Biomass burning is the largest combustion-related source of volatile organic compounds (VOCs) to the atmosphere. We describe the development of a state-of-the-science model to simulate the photochemical formation of secondary organic aerosol (SOA) from biomass-burning emissions observed in dry (RH <20%) environmental chamber experiments. The modeling is supported by (i) new oxidation chamber measurements, (ii) detailed concurrent measurements of SOA precursors in biomass-burning emissions, and (iii) development of SOA parameters for heterocyclic and oxygenated aromatic compounds based on historical chamber experiments. We find that oxygenated aromatic compounds, including phenols and methoxyphenols, account for slightly less than 60% of the SOA formed and help our model explain the variability in the organic aerosol mass (R2 = 0.68) and O/C (R2 = 0.69) enhancement ratios observed across 11 chamber experiments. Despite abundant emissions, heterocyclic compounds that included furans contribute to ∼20% of the total SOA. The use of pyrolysis-temperature-based or averaged emission profiles to represent SOA precursors, rather than those specific to each fire, provide similar results to within 20%. Our findings demonstrate the necessity of accounting for oxygenated aromatics from biomass-burning emissions and their SOA formation in chemical mechanisms.
中文翻译:
氧化芳族化合物是生物质燃烧排放中次要有机气溶胶的重要前体。
生物质燃烧是大气中与燃烧有关的最大挥发性有机化合物(VOC)来源。我们描述了一种科学发展模型的发展过程,该模型可以模拟在干燥(RH <20%)环境室内实验中观察到的生物质燃烧排放物中次级有机气溶胶(SOA)的光化学形成。该模型得到以下方面的支持:(i)新的氧化室测量;(ii)生物质燃烧排放中SOA前体的详细同时测量;以及(iii)根据历史室实验为杂环和含氧芳族化合物开发SOA参数。我们发现含氧的芳香族化合物(包括酚和甲氧基酚)仅占形成的SOA的60%以下,并帮助我们的模型解释了有机气溶胶质量的变化性(在11个腔室实验中观察到R 2 = 0.68)和O / C(R 2 = 0.69)增强比。尽管排放量很大,但包括呋喃在内的杂环化合物约占总SOA的20%。使用基于热解温度或平均的排放曲线来表示SOA前体,而不是特定于每次火灾的前兆,可以提供20%以内的相似结果。我们的发现表明,有必要考虑生物质燃烧排放中的氧化芳烃及其化学机理中SOA的形成。
更新日期:2020-07-21
中文翻译:
氧化芳族化合物是生物质燃烧排放中次要有机气溶胶的重要前体。
生物质燃烧是大气中与燃烧有关的最大挥发性有机化合物(VOC)来源。我们描述了一种科学发展模型的发展过程,该模型可以模拟在干燥(RH <20%)环境室内实验中观察到的生物质燃烧排放物中次级有机气溶胶(SOA)的光化学形成。该模型得到以下方面的支持:(i)新的氧化室测量;(ii)生物质燃烧排放中SOA前体的详细同时测量;以及(iii)根据历史室实验为杂环和含氧芳族化合物开发SOA参数。我们发现含氧的芳香族化合物(包括酚和甲氧基酚)仅占形成的SOA的60%以下,并帮助我们的模型解释了有机气溶胶质量的变化性(在11个腔室实验中观察到R 2 = 0.68)和O / C(R 2 = 0.69)增强比。尽管排放量很大,但包括呋喃在内的杂环化合物约占总SOA的20%。使用基于热解温度或平均的排放曲线来表示SOA前体,而不是特定于每次火灾的前兆,可以提供20%以内的相似结果。我们的发现表明,有必要考虑生物质燃烧排放中的氧化芳烃及其化学机理中SOA的形成。