当前位置:
X-MOL 学术
›
Diam. Relat. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-electron-affinity oxide V2O5 enhances surface transfer doping on hydrogen-terminated diamond
Diamond and Related Materials ( IF 4.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.diamond.2020.107865 Kaijian Xing , Sa Zhang , Alexander Tsai , Haiyan Xiao , Daniel L. Creedon , Steve A. Yianni , Jeffrey C. McCallum , Christopher I. Pakes , Dong-Chen Qi
Diamond and Related Materials ( IF 4.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.diamond.2020.107865 Kaijian Xing , Sa Zhang , Alexander Tsai , Haiyan Xiao , Daniel L. Creedon , Steve A. Yianni , Jeffrey C. McCallum , Christopher I. Pakes , Dong-Chen Qi
Abstract Diamond exhibits many desirable properties that could benefit the development of future carbon-based electronic devices. Its hydrogen-terminated surface, in conjunction with a suitable surface acceptor, develops a two-dimensional (2D) p-type surface conductivity through the surface transfer doping mechanism which can then be harvested for constructing functional devices. In this study, we have revisited the surface transfer doping of diamond by a high electron affinity (EA) transition metal oxide, V2O5. Through a combination of in-situ electrical measurements, Hall effect measurements and first-principles density functional theory (DFT) calculations, we explicitly show the intrinsic surface transfer doping behavior of V2O5, with doping performance superior to other competing TMOs such as MoO3. The metallic surface conduction of diamond induced by V2O5 is persistent down to 250 mK; this when coupled with the high hole density exceeding 7 × 1013 cm−2 offers a promising platform for the development of advanced diamond surface electronics exploiting many interesting quantum transport properties of the 2D hole layer of diamond.
中文翻译:
高电子亲和性氧化物 V2O5 增强了氢封端金刚石的表面转移掺杂
摘要 金刚石表现出许多理想的特性,可能有利于未来碳基电子设备的发展。其以氢为末端的表面与合适的表面受体结合,通过表面转移掺杂机制产生二维 (2D) p 型表面导电性,然后可以收集用于构建功能器件。在这项研究中,我们重新审视了高电子亲和性 (EA) 过渡金属氧化物 V2O5 对金刚石的表面转移掺杂。通过原位电测量、霍尔效应测量和第一性原理密度泛函理论 (DFT) 计算的组合,我们明确地展示了 V2O5 的固有表面转移掺杂行为,其掺杂性能优于其他竞争性 TMO,如 MoO3。V2O5 诱导金刚石的金属表面传导持续到 250 mK;这与超过 7 × 1013 cm-2 的高孔密度相结合,为利用金刚石 2D 孔层的许多有趣的量子传输特性开发先进的金刚石表面电子学提供了一个有前途的平台。
更新日期:2020-10-01
中文翻译:
高电子亲和性氧化物 V2O5 增强了氢封端金刚石的表面转移掺杂
摘要 金刚石表现出许多理想的特性,可能有利于未来碳基电子设备的发展。其以氢为末端的表面与合适的表面受体结合,通过表面转移掺杂机制产生二维 (2D) p 型表面导电性,然后可以收集用于构建功能器件。在这项研究中,我们重新审视了高电子亲和性 (EA) 过渡金属氧化物 V2O5 对金刚石的表面转移掺杂。通过原位电测量、霍尔效应测量和第一性原理密度泛函理论 (DFT) 计算的组合,我们明确地展示了 V2O5 的固有表面转移掺杂行为,其掺杂性能优于其他竞争性 TMO,如 MoO3。V2O5 诱导金刚石的金属表面传导持续到 250 mK;这与超过 7 × 1013 cm-2 的高孔密度相结合,为利用金刚石 2D 孔层的许多有趣的量子传输特性开发先进的金刚石表面电子学提供了一个有前途的平台。