当前位置:
X-MOL 学术
›
J. Appl. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design of electrical conductive poly(lactic acid)/carbon black composites by induced particle aggregation
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2020-04-04 , DOI: 10.1002/app.49295 Ji Hwan Kim 1 , Joung Sook Hong 1 , Kyung Hyun Ahn 1
Journal of Applied Polymer Science ( IF 2.7 ) Pub Date : 2020-04-04 , DOI: 10.1002/app.49295 Ji Hwan Kim 1 , Joung Sook Hong 1 , Kyung Hyun Ahn 1
Affiliation
The electrical conductivity of ternary composites composed of a biopolymer blend with conductive particles (carbon black [CB]) is induced by the control of particle dispersion in the dispersed phase. If the CB particles have higher chemical affinity for the secondary phase (poly(caprolactone) [PCL]]) than the matrix (poly(lactic acid) [PLA]), especially as the concentration of the PCL phase decreases significantly to 4 wt%, the PCL phase induces the aggregation of CB particles beyond the selective localization, resulting in a shift of the particle percolation threshold to a lower concentration of particles (2.44 wt% CB). Moreover, the mixing ratio between the CB and the PCL phase significantly affects the formation of percolation of particles. When the mixing ratio of CB to PCL is equivalent (1:1), the ternary composite shows high electrical DC conductivity above 1 S/m with 10 wt% CB. The addition of a small amount of PCL induces the formation of particle aggregates with a high aspect ratio, providing more electron transfer pathways due to the multiple points of contact between the particle aggregates (power law scaling exponent of the composites ~2.14). Meanwhile, a binary composite (PLA/CB) never reaches high electrical conductivity of 1 S/m and even requires a greater concentration of CB (13 wt% CB for 10−3 S/m) to accomplish electron transfer because of the small aspect ratio of randomly dispersed particle aggregates (power law scaling exponent ~3.20).
中文翻译:
诱导粒子聚集法设计导电聚乳酸/炭黑复合材料
通过控制分散相中的颗粒分散度,可以诱导由生物聚合物与导电颗粒(炭黑[CB])共混物组成的三元复合材料的电导率。如果CB颗粒对第二相(聚(己内酯)[PCL]]的化学亲和性高于基质(聚(乳酸)[PLA]),特别是当PCL相的浓度显着降低至4 wt% ,PCL相导致CB颗粒的聚集超出了选择性定位,导致颗粒渗滤阈值向较低浓度的颗粒(2.44 wt%CB)转移。而且,CB和PCL相之间的混合比例显着影响颗粒渗滤的形成。当CB与PCL的混合比等于(1:1)时,三元复合材料显示出高于1 S / m的高直流电导率,含10 wt%的CB。少量PCL的添加会导致高纵横比的颗粒聚集体形成,由于颗粒聚集体之间存在多个接触点,从而提供了更多的电子传输途径(复合材料的幂律定标指数为〜2.14)。同时,二元复合材料(PLA / CB)永远不会达到1 S / m的高电导率,甚至需要更高浓度的CB(10%的CB为13 wt%-3 S / m)来完成电子转移,这是因为随机分散的粒子聚集体的纵横比较小(幂律定标指数〜3.20)。
更新日期:2020-04-04
中文翻译:
诱导粒子聚集法设计导电聚乳酸/炭黑复合材料
通过控制分散相中的颗粒分散度,可以诱导由生物聚合物与导电颗粒(炭黑[CB])共混物组成的三元复合材料的电导率。如果CB颗粒对第二相(聚(己内酯)[PCL]]的化学亲和性高于基质(聚(乳酸)[PLA]),特别是当PCL相的浓度显着降低至4 wt% ,PCL相导致CB颗粒的聚集超出了选择性定位,导致颗粒渗滤阈值向较低浓度的颗粒(2.44 wt%CB)转移。而且,CB和PCL相之间的混合比例显着影响颗粒渗滤的形成。当CB与PCL的混合比等于(1:1)时,三元复合材料显示出高于1 S / m的高直流电导率,含10 wt%的CB。少量PCL的添加会导致高纵横比的颗粒聚集体形成,由于颗粒聚集体之间存在多个接触点,从而提供了更多的电子传输途径(复合材料的幂律定标指数为〜2.14)。同时,二元复合材料(PLA / CB)永远不会达到1 S / m的高电导率,甚至需要更高浓度的CB(10%的CB为13 wt%-3 S / m)来完成电子转移,这是因为随机分散的粒子聚集体的纵横比较小(幂律定标指数〜3.20)。