Journal of Cleaner Production ( IF 9.7 ) Pub Date : 2020-03-09 , DOI: 10.1016/j.jclepro.2020.120932 Jonathan T.E. Lee , Qingkun Wang , Ee Yang Lim , Zhentian Liu , Jianzhong He , Yen Wah Tong
Lignocellulosic materials are the largest component of biomass in the world, and therefore suitable substrates for anaerobic digestion (AD). However, they are recalcitrant due to lignin-encrustation and the crystallinity of cellulose. Utilizing the wealth of knowledge in literature, this study compares different bioaugmentation strategies for the AD of Axonopus compressus, common name cowgrass, from single cultures to an engineered mix of three microbes with different functions. An optimization experiment is carried out on the biochemical methane potential with the best combination resulting in 20.7% more methane. The combination is then validated in a reactor operated semi-continuously, which increased production relative to the control after 18 days. The community dynamics of the bioaugmented reactor was tracked by Illumina MiSeq and compared against that of the control. The results prove that a properly engineered bioaugmentation is capable of increasing methane yield from a lignocellulosic substrate.
中文翻译:
厌氧消化的生物强化技术优化地毯草cowgrass用于生产生物甲烷气
木质纤维素材料是世界上生物质的最大组成部分,因此是厌氧消化(AD)的合适底物。然而,由于木质素结壳和纤维素的结晶性,它们是难降解的。利用文献中的丰富知识,本研究比较了不同的生物增强策略来解决轴突compress的AD,俗称cow草,从单一培养物到三种功能不同的微生物的工程混合物。以最佳组合对生化甲烷潜力进行了优化实验,从而使甲烷增加了20.7%。然后在半连续运行的反应器中验证该组合,该反应器在18天后相对于对照提高了产量。Illumina MiSeq跟踪了生物强化反应器的群落动力学,并将其与对照进行了比较。结果证明,经过适当工程改造的生物增强技术能够提高木质纤维素底物的甲烷收率。