1. Chong*, S.; Li, T.; Qiao, S.; Yang, Y.; Liu, Z.; Yang*, J.; Tuan,* H.; Cao,* G.; Huang, W., Boosting Manganese Selenide Anode for Superior Sodium-Ion Storage via Triggering α →β Phase Transition. ACS Nano 2024, 18, 3801- 3813.
2. Hu, L.; Yang, J.; Zhai, Y.; Yang*, J.; Li*, H., Charge fluctuation drives anion rotation to enhance the conductivity of Na11M2PS12(M = Si, Ge, Sn) superionic conductors. Phys. Chem. Chem. Phys. 2023, 25, 7634-7641
3. Wu, J.; Yang*, J.; Leong, Z.; Zhang, F.; Deng, H.; Ouyang, G.; Yu*, J., A Method to Inhibit Disproportionation of Mn3+ for Low-Cost Mn−Fe All-Flow Battery. ACS Appl. Energy Mater. 2022, 5, 14646−14651.
4. Zeng, Y.; Gordiichuk, P.; Ichihara, T.; Zhang, G.; Sandoz-Rosado, E.; Wetzel, E. D.; Tresback, J.; Yang, J.; Kozawa, D.; Yang, Z.; Kuehne, M.; Quien, M.; Yuan, Z.; Gong, X.; He, G.; Lundberg, D. J.; Liu, P.; Liu, A. T.; Yang, J. F.; Kulik, H. J.; Strano, M. S., Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 2022, 602, 91-95.
5. Chong, S.; Yuan, L.; Li, T.; Shu, C.; Qiao, S.; Dong, S.; Liu, Z.; Yang*, J.; Liu, H. K.; Dou, S. X.; Huang, W., Nitrogen and Oxygen Co-Doped Porous Hard Carbon Nanospheres with Core-Shell Architecture as Anode Materials for Superior Potassium-Ion Storage. Small 2022, 18 (8), 2104296: 1-11.
6. Chong, S.; Yang*, J.; Sun, L.; Guo, S.; Liu, Y.; Liu, H. K., Potassium nickel iron hexacyanoferrate as ultra-long life cathode material for potassium ion batteries with high energy density. ACS Nano 2020, 14, 8, 9807-9818.
7. Transue, W. J.; Nava, M.; Terban, M. W.; Yang, J.; Greenberg, M. W.; Wu, G.; Foreman, E. S.; Mustoe, C. L.; Kennepohl, P.; Owen, J. S.; Billinge, S. J. L.; Kulik, H. J.; Cummins, C. C., Anthracene as a Launchpad for a Phosphinidene Sulfide and for Generation of a Phosphorus–Sulfur Material Having the Composition P2S, a Vulcanized Red Phosphorus That Is Yellow. J. Am. Chem. Soc. 2019, 141 (1), 431-440.
8. Yang, F.; Yang, J.; Qi, Y.; de Boer, M.; Carpick, R.; Rappe, A. M.; Srolovitz, D., Mechanochemical effects of adsorbates at nanoelectromechanical switch contacts. ACS Appl. Mater. & Interfaces 2019, 11, 39238-39247.
9. Sarkar, S.#; Yang, J.#; Tan, L. Z.; Rappe, A. M.; Kronik, L., Molecule-adsorbed topological insulator and metal surfaces: A comparative first principles study. Chem. Mater. 2018,30 (6), 1849-1855.
10. Yang, J.; Tan, L. Z.; Rappe, A. M., Hybrid functional pseudopotentials. Phys. Rev. B 2018, 97 (8), 085130-1-085130-9.
11. Yang, J.; Qi, Y.; Kim, H. D.; Rappe, A. M., Tribopolymer formation mechanism on the RuO2 surface. Phys. Rev. Appl. 2018, 9, 044038-1-044038-6.
12. Kim, H. D.; Yang, J.; Rappe, A. M., Adsorption of benzene on the RuO2(110) surface. J. Phys. Chem. C 2017, 121, 1585-1590.
13. Qi, Y.; Yang, J.; Rappe, A. M.,Theoretical modeling of tribochemicalreaction on Pt and Au contacts: Mechanical load and catalysis. ACS Appl. Mater. & Interfaces 2016, 8, 7529-7535.
14. Streller, F.; Qi, Y.; Yang, J.; Mangolini, F.; Rappe, A. M.; Carpick, R. W., Valence band control of metal silicide films via stoichiometry. J. Phys. Chem. Lett. 2016, 7, 2573-2578.
15. Streller, F.; Wabiszewski, G. E.; Durham, D. B.; Yang, F.; Yang, J.; Qi, Y.; Srolovitz, D. J.; Rappe, A. M.; Carpick, R. W., Novel materials solutions and simulations for nanoelectromechanical switches. IEEE Holm Conference on Electrical Contacts 2015, 363-369.