29275
当前位置: 首页   >  课题组新闻   >  祝贺纪文涛老师的研究工作成果发表于《ACS Omega》:Variation Law of Hybrid Explosion Characteristic Parameters of Gas and Coal Dust Coupled with Multiple Factors
祝贺纪文涛老师的研究工作成果发表于《ACS Omega》:Variation Law of Hybrid Explosion Characteristic Parameters of Gas and Coal Dust Coupled with Multiple Factors
发布时间:2024-09-02

    This study aims at extensively investigating the explosion characteristics of a hybrid mixture of gas and coal dust. Accordingly, the standard 20 L spherical explosion system was applied to measure parameters such as the lower explosion limit, maximum explosion pressure, and index of the hybrid mixture of different concentrations of gas and coal dust. Moreover, different coal dust particle sizes and components were measured. With regard to coal dust with different particle sizes and components, the obtained results revealed that, while the addition of gas significantly reduced the lower explosion limit, the maximum explosion pressure and index were increased; that is to say, the presence of gas will increase the explosion risk of coal dust. However, under conditions in which the particle size of the coal dust was large or the volatile content was low, the addition of gas was found to lead to a higher decrease of the lower explosion limit; this is, while the maximum explosion pressure and explosion index were increased. Consequently, gas can be argued to have a greater influence on the explosion risk of coal dust with a large particle size or low volatile content. Furthermore, regardless of the particle size or the volatile content of coal dust, the maximum explosion pressure and explosion index of the hybrid mixture were observed to be higher than that of the pure coal dust but lower than that of the pure gas. That is to say, the explosion intensity of the gas/coal dust composite system is higher than that of pure coal dust but less than that of pure gas. The research results can provide theoretical basis for coal mine explosion disaster prevention and control and have important significance.