60499
当前位置: 首页   >  课题组新闻   >  南京航空航天大学彭生杰课题组AM:揭秘中性OER过程中电催化剂的结构转变
南京航空航天大学彭生杰课题组AM:揭秘中性OER过程中电催化剂的结构转变
发布时间:2023-12-01

【文章信息】

路易斯酸驱动不对称界面电子分布以稳定活性物质实现高效中性水氧化

第一作者:赵晟

通讯作者:彭生杰教授*

通讯单位:南京航空航天大学


【全文速览】

中性析氧反应(OER)具有独特的反应环境,反应动力学极其缓慢,这给催化剂的设计带来了重大挑战。在此,作者精心构建功函数可调的钨酸盐(Ni-FeWO4)LewisWO3之间的内建电场,调节界面电子的不对称分布,促进钨酸盐中Fe位的电子聚集,减缓了FeOER电位下的快速溶解,从而保留了具有优化OER反应途径的活性羟基氧化物。同时,LewisWO3增强了电极表面附近羟基的吸附,改善了传质。本研究加深了对OER催化剂在中性环境下重构的认识,为能量转换技术的发展铺平了道路。

相关工作以《Lewis Acid Driving Asymmetric Interfacial Electron Distribution to Stabilize Active Species for Efficient Neutral Water Oxidation》为题在《Advanced Materials》上发表。

 

【研究问题】

与在恶劣的碱性和酸性环境下的反应相比,在中性介质中电解水裂解析氢反应的反应条件更温和,从而减少了设备的腐蚀,延长了电解槽的使用寿命。然而,与对碱性OER催化剂广泛而深入的研究相比,非贵金属材料在中性环境下的反应过程还需要更多的阐明。在中性OER过程中,电极附近氢氧根离子的快速消耗可以减少电极附近的传质,从而影响催化剂的反应动力学。中性条件下反应环境的独特性给高效OER催化剂的设计提出了巨大的挑战。


【图文导读】


Figure 1. a) Scheme of the preparation process of Ni-FeWO4@WO3/NF-1. b) XRD pattern of Ni-FeWO4@WO3-1. c) TEM and d) AC-TEM images of Ni-FeWO4@WO3/NF-1. XPS fine spectra of e) Ni 2p and f) Fe 2p of Ni-FeWO4/NF-1 and Ni-FeWO4@WO3/NF-1. Normalized g) Ni K-edge, and h) Fe K-edge XANES Ni-FeWO4/NF-1, Ni-FeWO4@WO3/NF-1, and the corresponding references. i-j) The corresponding k3-weighted Fourier transforms.


要点一:溶剂热过程中经由Fe3+刻蚀而获得的Ni2+被有效引入FeWO4中以形成Ni-FeWO4固溶体,这与WO3共同组装成为Ni-FeWO4/WO3复合物。由于Na2WO4·2H2O在环己醇中的溶解度有限,部分未溶解的Na2WO4·2H2O热解后在钨酸盐表面沉积为WO3Ni-FeWO4WO3显著的功函数促差使驱动电子从WO3表面溢出到钨酸盐实现强电子相互作用以构筑稳定内建电场。

 

Figure 2. a) LSV polarization curves of OER and b) Tafel plots of Ni-FeWO4/NF-1, Ni-FeWO4@WO3/NF-1, RuO2/NF, and WO3/NF in 1 M PBS. c) Comparison of the overpotentials at 10 mA cm−2 and Tafel slopes of Ni-FeWO4@WO3/NF prepared using different precursor dosages. d) EIS Nyquist curves of Ni-FeWO4/NF-1, Ni-FeWO4@WO3/NF-1, RuO2/NF, and WO3/NF. e) Linear fitting of the current density versus scan rates of Ni-FeWO4/NF-1, Ni-FeWO4@WO3/NF-1, RuO2/NF, and WO3/NF, and the corresponding value of Cdl. f) Chronopotentiometric test of Ni-FeWO4@WO3/NF-1 at 10 mA cm−2 and the inset displays the LSV polarization curves of Ni-FeWO4@WO3/NF-1 before and after 3000 CV cycles. g) The dissolution rates of the Ni and Fe in Ni-FeWO4/NF-1 and Ni-FeWO4@WO3/NF-1 obtained by inductively coupled plasma-mass spectrometry (ICP-MS) during the chronopotentiometry tests. h) The overpotentials of Ni-FeWO4/NF-1 and Ni-FeWO4@WO3/NF-1 at 10 mA cm−2 in neutral and alkaline environment. i) Comparison of the overpotentials at 10 mA cm−2 and Tafel slopes with the recent materials for neutral OER.


要点二:伴随着与WO3形成强内建电场,Ni-FeWO4@WO3/NF展现出仅为235 mV at 10 mA cm-2的超低过电势,这远低于贵金属RuO2/NF473 mV at 10 mA cm-2)。在计时电位测量中,Ni-FeWO4@WO3/NF可以维持200小时的稳健运行并伴随着可以被忽略的性能衰减。并且,在经历3000CV循环后,Ni-FeWO4@WO3/NFLSV曲线仍然可以与初始曲线良好重合。这展现了Ni-FeWO4@WO3/NF在中性环境中优异的稳定性。


 

Figure 3. In-situ Raman spectra of a) Ni-FeWO4/CP-1 and b) Ni-FeWO4@WO3/CP-1 under different operated potentials (VS. RHE). c) Normalized peak intensity of the Raman signals corresponding to FeOOH. The content of Fe2+, Fe3+, Ni2+, and Ni3+ in c) Ni-FeWO4-1 and d) Ni-FeWO4@WO3-1 before and after OER cycling. f) Zeta potential values of WO3, Ni-FeWO4-1, and Ni-FeWO4@WO3-1. EIS Bode plots of g) Ni-FeWO4/CP-1, and h) Ni-FeWO4@WO3/CP-1 at the potentials of 1.25-1.85 V vs. RHE. i) Schematic illustration of the neutral OER process of Ni-FeWO4@WO3/NF-1.


要点三Ni-FeWO4@WO3OER过后钨酸盐部分转化为非晶的羟基氧化并伴随着原本物相的良好保持以维持与WO3之间的异质界面。原位拉曼证明了WO3FeNi过度氧化的抑制作用。

 

Figure 4. a) Charge density difference of Ni-FeWO4@WO3-1. b) Plane-average electron difference diagram of the interface between Ni-FeWO4 and WO3. c) Projected DOS of Fe 3d in Ni-FeWO4-1, and Ni-FeWO4@WO3-1. d) The d-band widths of Fe 3d and Ni 3d in Ni-FeWO4-1, and Ni-FeWO4@WO3-1. e) Free energy profiles of different OER intermediates at 0 V for Fe site in Ni-FeWO4-OOH, Ni site in Ni-FeWO4-OOH, Fe site in Ni-FeWO4-OOH@WO3, Ni site in Ni-FeWO4-OOH@WO3, and W site in WO3. f) Variation of the d-band widths of Fe 3d in Ni-FeWO4-1, and Ni-FeWO4@WO3-1. g) Schematic illustration of the electron barrier layer for the protection of Fe, and Ni sites in Ni-FeWO4@WO3.


要点四:利用DFT理论计算验证了WO3朝向Ni-FeWO4的界面电子注入促使了NiFe原子的d电子轨道离域,这为Ni-FeWO4中的NiFe位点提供了良好的电子屏障以避免其过度氧化。


Figure 5. a) Conceptual model of the water splitting in 1 M PBS. b) LSV polarization curves of Ni-FeWO4@WO3/NF-1 ‖ Pt/C/NF, Ni-FeWO4-1 ‖ Pt/C/NF, and RuO2/NF ‖ Pt/C/NF for the neutral water splitting. c) The corresponding chronopotentiometry tests of Ni-FeWO4@WO3/NF-1 ‖ Pt/C/NF, Ni-FeWO4-1 ‖ Pt/C/NF at 10 mA cm−2. d) Schematic illustration of neutral seawater electrolyzer assembled with Ni-FeWO4@WO3/NF-1, Ni-FeWO4/NF-1, and RuO2/NF as the anodes and Pt/Ti felt as the cathodes. e) Steady polarization curves of neutral seawater electrolyzer at 60 °C. f) Faraday efficiency tests of neutral seawater electrolyzer using Ni-FeWO4@WO3/NF-1 ‖ Pt/Ti felt at 200 mA cm−2. g) Chronopotentiometry tests of Ni-FeWO4@WO3/NF-1 ‖ Pt/Ti felt and Ni-FeWO4/NF-1 ‖ Pt/Ti felt for neutral seawater electrolyzer. The insets show the water contact angle tests of Ni foam and Ni-FeWO4@WO3/NF-1. h) Comparison of the performance parameter of Ni-FeWO4/NF-1, and Ni-FeWO4@WO3/NF-1 in neutral OER and the corresponding MEA for neutral seawater electrolyzer.


要点五:得益于中性环境中Ni-FeWO4@WO3/NF优异的OER活性,其相对应的MEA器件获得明显优于商业RuO2催化剂的直接海水电解性能与更高法拉第效率。


【结论】

综上所述,我们成功构建了内置可调电场的Ni-FeWO4@WO3/NF自支撑电极,在中性介质中实现了高效稳定的OER。在内建电场中,LewisWO3不仅作为电子供体为钨酸盐中的Fe位提供电子,而且促进−OH在电极表面的吸附,加速传质。此外,Ni-FeWO4的功函数调节改变了WO3的缺电子状态,实现了合适的内置电场界面电子不对称分布。这些因素抑制了快速铁浸出,以稳定中性OER过程中产生的活性氢氧化物。


【文章链接】

 https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202308925


【通讯作者简介】

彭生杰,南京航空航天大学教授,博士生导师,英国皇家化学会会士(FRSC)。入选国家青年人才,江苏省特聘教授、江苏省双创人才计划、江苏省六大人才高峰高层次人才、南航首批长空学者,主持江苏省杰出青年基金、国家自然基金面上项目、江苏省双碳专项和南京留学人员科技创新项目。2010年于南开大学取得博士学位,导师陈军院士。随后分别加入南洋理工大学Prof. Yan Qingyu和新加坡国立大学Prof. Seeram Ramakrishna(英国工程院院士)课题组进行博士后研究。近十年来,一直从事微纳米结构及新型功能材料的设计、合成及其电化学储能与催化研究,取得了一系列创新性科研成果。其中以第一/通讯作者在Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed.Adv. Mater. 等发表SCI论文130余篇,共计发表论文180余篇,研究成果受到国际国内同行的广泛关注,被引用1.3万余次,H-index 60。目前担任《eScience》,《Advanced Fiber Materials》等六个中英文期刊青年编委,出版学术专著三部,撰写英文专著一章。申请中国发明/授权专利30项。

课题组主页:https://www.x-mol.com/groups/peng_shengjie