20732
当前位置: 首页   >  组员介绍   >  彭峰
彭峰 教授 博士生导师    


个人简介


彭峰,博士,广州大学化学化工学院教授、化工学科学术带头人,从事环境与能源中的催化基础研究,共主持科技部863计划、国家自然科学基金、广东省自然科学重点基金,广东省、广州市攻关计划等项目30余项;在Energy Environ. Sci., Angew. Chem. Ed. Int., ACS Catal., ACS Nano, Appl. Catal. B.-Environ., J. Catal., Chem. Eng. J., AIChE等国内外有影响刊物上发表SCI源刊物论文300多篇;发表的研究论文得到了国际同行的大量引用与好评,SCI他引10000余次,H因子65;出版专著一部(《工业催化剂设计与开发》,70万字,2009年9月化学工业出版社出版,作为国家级“工科研究生教育创新工程”化工类研究生教学用书);获得发明专利授权34件;“质子交换膜燃料电池的应用基础研究”获得教育部自然科学二等奖,排名第二;2014年至今每年次入选爱思唯尔公布的中国高被引学者、最具世界影响力的中国学者榜单(化学工程领域)。

Email:fpeng@gzhu.edu.cn

教育经历


1993.09-1996.06  华南理工大学,化学工程系,工学博士

1990.09-1993.04  湖南大学,化学与化工系,工学硕士

1986.09-1990.06  湖南大学,化学与化工系,工学学士


工作经历


2018.01-至今       广州大学,化学化工学院,教授,化工学科学术带头人

2006.12-2017.12    华南理工大学,化学与化工学院,教授、博士生导师

2006.03-2006.04    澳洲科廷技术大学,中澳天然气能源项目访问研究

2004.01-2012.12    华南理工大学,化学与化工学院 副院长

2000.12-2005.12    华南理工大学,化学与化工学院,副教授,硕士生导师

1996.07-2000.11    华南理工大学,化学与化工学院,讲师


研究方向


  1.  纳米碳材料及其碳催化

  2. 光催化新材料及其环境与能源催化应用

  3. 燃料电池催化材料与电催化(ORR)

  4. 纯碱行业清洁生产技术(企业合作)



代表性文章


电催化方向代表性论文(2010-至今)

  1. Zenan Wu, Guangxing Yang*, Qiao Zhang, Zhiting Liu*, and Feng Peng*.Deciphering the High Overpotential of Oxygen Reduction Reaction via Comprehensively Elucidating the Open Circuit Potential, Energy & Environmental Science, 2024, DOI: 10.1039/D3EE04368A
  2. Jiahong Zhang, Jiaqi Xu, Xinrou Huang, Qiao Zhang*, Guangxing Yang, Zhiting Liu, and Feng Peng*.  Electrocatalytic hydrogenation of 5-hydroxymethyfurfural reactions promoted by CuZn catalysts. Materials Today Sustainability 2024, 25, 7100653 
  3. Jie Chen, Guangxing Yang*, Dongyan Shen, Qiao Zhang, Zhiting Liu, and Feng Peng*. Surfactant-free synthesis of colloidal Pt nanoparticles with a wide size range from 2 to 10 nm for studying size effect. International Journal of Hydrogen Energy 2024, 53, 728-735
  4. Xiang Li, Guangxing Yang*, Qiao Zhang, Zhiting Liu,  and Feng Peng*.Alkali Metal Cation–Sulfate Anion Ion Pairs Promoted the Cleavage of C–C Bond During Ethanol Electrooxidation.The Journal of Physical Chemistry Letters 2023,14(49), 11177-11182
  5. Qingting Zeng, Guangxing Yang, Qiao Zhang, Zhiting Liu, Chengxiong Dang, Binhao Qin,* Feng Peng*. Elucidating the origin of catalytic activity of nitrogen-doped carbon coated nickel toward electrochemical reduction of CO2. Journal of Colloid and Interface Science 2023650,132-142.
  6. Qingting Zeng, Guangxing Yang, Jianhao Chen, Qiao Zhang,* Zhiting Liu, Binhao Qin,* Feng Peng*. Effects of nitrogen and oxygen on electrochemical reduction of CO2 in nitrogen-doped carbon black. Carbon2023202, 1-11.
  7. Y. Zhu, X. Li, Q. Zhang, F. Peng, Which Is Better for Hydrogen Evolution on Metal@MoS2 Heterostructures from a Theoretical Perspective: Single Atom or Monolayer, ACS Applied Materials & Interfaces, 2022, 14(22): 25592-25600
  8. L. Lai, G. Yang, Q. Zhang, H. Yu, F. Peng, Essential analysis of cyclic voltammetry of methanol electrooxidation using the differential electrochemical mass spectrometry, Journal of Power Sources, 2021, 509, 230397.
  9. D. Shen, Y. Liu, G. Yang, H. Yu, P. Liu, F. Peng, Surface-structure sensitive chemical diffusivity and reactivity of CO adsorbates on noble metal electrocatalysts, Applied Catalysis B: Environmental, 2021, 281, 119522.

  10. B. Qin, Y. Li, Q. Zhang, G. Yang, H. Wang, Y. Zhang, F. Peng, Mechanistic Insights into the Electrochemical Reduction of CO2 and N2 on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations, Journal of Physical Chemisty Letters, 2021, 12, 7151-7158

  11. D.Q. Liu, G.X. Yang, Q. Zhang, H.J. Wang, H. Yu, F. Peng, Highly Enhanced Methanol Electrooxidation on Pt/N-CNT-Decorated FeP**, ChemElectroChem, 2021, 8, 2442-2448.

  12. G. Yang, Q. Zhang, H. Yu, F. Peng, Platinum-based ternary catalysts for the electrooxidation of ethanol, Particuology2021, 58:169-186.
  13. B. Qin, Y. Li, Q. Zhang, G. Yang, H. Liang, F. Peng, Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory, Nano Energy, 2020, 68: 104374

  14. Y. Shen, Y. Li, G. Yang, Q. Zhang, H. Liang, F. Peng, Lignin derived multi-doped (N, S, Cl) carbon materials as excellent electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells, Journal of Energy Chemistry, 2020, 44: 106-114.

  15. W. Li, Y. Li, H. Fu, G. Yang, Q. Zhang, S. Chen, F. Peng, Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries, Chemical Engineering Journal, 2020, 381: 122683

  16. Y. Li, Y. Tong, F. Peng, Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and mechanism, Journal of Energy Chemistry, 2020, 48: 308-321
  17. X. Cai, B. Qin, Y. Li, Q. Zhang, G. Yang, H. Wang, Y. Cao, H. Yu, F. Peng, Chlorine-Promoted Nitrogen and Sulfur Co-Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction, ChemElectroChem, 2020, 7 (1): 320-327.
  18. B. Qin, Q. Zhang, Y-H. Li, G. Yang, F. Peng, Formation of Lattice-Dislocated Zinc Oxide via Anodic Corrosion for Electrocatalytic CO2 Reduction to Syngas with a Potential-Dependent CO:H2 Ratio, ACS Applied Materials & Interfaces, 2020, 12 (27): 30466-30473
  19. B. Qin, Q. Zhang, Y. Li, G. Yang, H. Yu, F. Peng, Mechanistic Insights into the Electrochemical Reduction of CO2 on Cyclo18 carbon using Density Functional Theory Calculations, ChemElectroChem, 2020, 7 (8): 1838-1842.
  20. Y. Li, Z. Qiao, Y. Cao, H. Wang, H. Liang, H. Yu, F. Peng, Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbon-Based Catalysts Evidenced by Theoretical Calculations, ChemSusChem, 2019,12(6): 1133-1138. 
  21. B. Qin, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang, F. Peng, Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies, Nano Energy, 2019, 60: 43-51.
  22. D.Y. Shen, Y. Liu, G.X. Yang, H. Yu, F. Peng, Mechanistic Insights into Cyclic Voltammograms on Pt (111): Kinetics Simulations, ChemPhysChem, 2019, 20 (21): 2791-2798.
  23. W. Li, H. Fu, Y. Cao, H. Wang, H. Yu, Z. Qiao, H. Liang, F. Peng, Mn3O4@C Nanoparticles Supported on Porous Carbon as Bifunctional Oxygen Electrodes and their Electrocatalytic Mechanism, ChemElectroChem, 2019, 6(2): 359-368
  24. Y. Shen, F. Peng, Y. Cao, J. Zou, H. Wang, H, Yu, Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media, Journal of Energy Chemistry, 2019, 34: 33-42
  25. H. Wang, Y. Song, Y. Cao, H. Yu, H. Liang, F. Peng, Facile synthesis of cobalt and nitrogen coordinated carbon nanotube as a high-performance electrocatalyst for oxygen reduction reaction in both acidic and alkaline media, ACS Sustainable Chemistry & Engineering, 2019, 7 (12): 10951-10961
  26. B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu, F. Peng, Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst, ACS Applied Materials & Interfaces, 2018, 10(24): 20530-20539
  27. W. Li, Y. Li, H. Wang, Y. Cao, H. Yu, F. Peng, Co9S8-porous carbon spheres as bifunctional electrocatalysts with high activity and stability for oxygen reduction and evolution reactions, Electrochimica Acta, 2018, 265: 32-40
  28. G. Zhong, S. Li, S. Xu, W. Liao, X. Fu, F. Peng, Nickel Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotubes as Excellent Bifunctional Oxygen Electrode for Fuel Cell and Metal-Air Battery, ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15108-15118
  29. R. Lv, H. Wang, H. Yu, F. Peng, Controllable preparation of holey graphene and electrocatalytic performance for oxygen reduction reaction, Electrochimica Acta, 2017, 228: 203-213
  30. X. Wan, H. Wang, H. Yu, F. Peng, Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst, Journal of Power Sources, 2017, 346: 80-88
  31. S. Zhang, X. Wang, J. Hu, Z. Xie, H. Lei, F. Peng, Design of two kinds of branched TiO2 nano array photoanodes and their comparison of photoelectrochemical performances, Electrochimica Acta, 2017, 252: 368-373
  32. B. Qin, H. Wang, F. Peng, H. Yu, Y. Cao, Effect of the surface roughness of copper substrate on three-dimensional tin electrode for electrochemical reduction of CO2 into HCOOH, Journal of CO2 Utilization, 2017, 21: 219-223
  33. Y. Wu, L. Zhan, K. Huang, H. Wang, H. Yu, F. Peng, C. Lai, Iron based dual-metal oxides on graphene for lithium-ion batteries anode: Effects of composition and morphology, Journal of Alloys and Compounds, 2016, 684: 47-54
  34. G. Zhong, H. Wang, H. Yu, F. Peng, Chemically drilling carbon nanotubes for electrocatalytic oxygen reduction reaction, Electrochimica Acta, 2016, 190: 49-56
  35. Y. Fang, H. Wang, H. Yu, F. Peng. From chicken feather to nitrogen and sulfur co-doped large surface bio-carbon flocs: an efficient electrocatalyst for oxygen reduction reaction, Electrochimica Acta, 2016, 213: 273-282
  36. G. Zhong, H. Wang, H. Yu, F. Peng. Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media, Journal of Power Sources, 2015, 286: 495-503
  37. Y. Wu, Q. Shi, Y. Li, Z. Lai, H. Yu, H. Wang, F. Peng. Nitrogen-doped graphene-supported cobalt carbonitride@oxide core–shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction, Journal of Materials Chemistry A, 2015, 3: 1142-1151
  38. Y. Li, G. Zhong, H. Yu, H. Wang, F. Peng, O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations, Physical Chemistry Chemical Physics, 2015, 17: 21950-21959
  39.  X. Li, H. Wang, H.Yu, Z. Liu, H. Wang, F. Peng, Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells, Electrochimica Acta, 2015, 185: 178-183
  40. G. Zhong, H. Wang, H. Yu, F. Peng, The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction, Electrochemistry Communications, 2014, 40: 5-8
  41. X. Li, H. Wang, H. Yu, Z. Liu, F. Peng, An opposite change rule in carbon nanotubes supported platinum catalyst for methanol oxidation and oxygen reduction reactions, Journal of Power Sources, 2014, 260: 1-5
  42. Z. Liu, Q. Shi, R. Zhang, Q. Wang, G. Kang, F. Peng, Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells, Journal of Power Sources, 2014, 268: 171-175
  43. Q. Shi, F. Peng, S. Liao, H. Wang, H.Yu, B. Zhang, D. Su, Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media, Journal of Materials Chemistry A, 2013, 1 (47): 14853-14857
  44. G. Zhong, H. Wang, H. Yu, F. Peng, A novel carbon-encapsulated cobalt-tungsten carbide electrocatalyst for oxygen reduction reaction in alkaline media, Fuel Cells, 2013, 13(3): 387-391
  45. Z. Liu, Q. Shi, F. Peng, H. Wang, R. Zhang, H. Yu. Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells, Electrochemistry Communications, 2012, 16: 73-76
  46. Z. Liu, F. Peng, H. Wang, H. Yu, W. Zheng, X. Wei. Preparation of phosphorus-doped carbon nanospheres and their electrocatalytic performance for O2 reduction, Journal of Natural Gas Chemistry, 2012, 21:257-264
  47. Z. Liu, Q. Shi, F. Peng, H. Wang, H. Yu, J. Li, X. Wei. Enhanced methanol oxidation activity of Pt catalyst supported on phosphorus-doped multiwalled carbon nanotubes in alkaline medium, Catalysis Communications, 2012, 22: 34-38
  48. Z. Liu, F. Peng, H. Wang, H. Yu, C. Chen, W. Zheng, Q. Shi. Design of Pt catalyst with high electrocatalytic activity and well tolerance to methanol for oxygen reduction in acidic medium, Catalysis Communications, 2012, 29: 11-14
  49. Z. Liu, F. Peng, H. Wang, H. Yu, W. Zheng, J. Yang. Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium, Angewandte Chemie-International Edition, 2011, 50: 3257-3261
  50. Z. Liu, F. Peng, H. Wang, H. Yu, J. Tan, L. Zhu. Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium, Catalysis Communications, 2011,16: 35-38
  51. C. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, and X. Fu. Facile preparation of an excellent Pt/RuO2-MnO2/CNTs nanocatalyst for anodes of direct methanol fuel cells, Fuel Cells, 2011, 11: 301-308
  52. C. Zhou, F. Peng, H. Wang, H. Yu, C. Peng, J. Yang. Development of stable PtRu catalyst coated with manganese dioxide for electrocatalytic oxidation of methanol, Electrochemistry Communications, 2010, 12: 1210-1213
  53. H. Wang, J. Liang, L. Zhu, F. Peng, H. Yu, J. Yang, High oxygen-reduction-activity and methanol-tolerance cathode catalyst Cu/PtFe/CNTs for direct methanol fuel cells, Fuel Cells, 2010, 10: 99-105

光催化方向代表性论文(2010-至今)


  1. Meng Wei, Mingli Li, Qiongzhi Gao, Xin Cai, Shengsen Zhang, Yueping Fang, Feng Peng*, and Siyuan Yang*. Bifunctional Ni Foam Supported TiO2@Ni 3S2 core@shell Nanorod Arrays for Boosting Electrocatalytic Biomass Upgrading and H2 Production Reactions. Small 2023, 2305906
  2. Qiuman Zhang, Meng Wei, Qianwen Dong, Qiongzhi Ga, Xin Cai, Shengsen Zhang, Teng Yuan, Feng Peng*, Yueping Fang, and Siyuan Yang*. Photoinduced Cu+/Cu2+ interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery. Journal Energy Chemistry  2023, 79,83-91
  3. Xunfu Zhou, Lanzhen Peng, Limei Xu, Jin Luo, Xiaomei Ning, Xiaoqin Zhou*, Feng Peng*, and Xiaosong Zhou*. Pd(II), Pt(II) metallosupramolecular complexes as Single-Site Co-Catalyst for photocatalytic H2 evolution. Chemical Engineering Journal  2023, 474,145967
  4. Qianwen Dong, Meng Wei, Qiuman Zhang, Lifeng Xiao, Xin Cai, Shengsen Zhang, Qiongzhi Gao, Yueping Fang, Feng Peng*, and Siyuan Yang*.Photoassisted Li-ion de-intercalation and Niδ+ valence conversion win-win boost energy storage performance in Ni/CdS@Ni3S2-based Li-ion battery. Chemical Engineering Journal  2023, 459,141542
  5. Zhi Yang, Meng Li, Sibo Chen, Siyuan Yang, Feng Peng,* Jihai Liao, Yueping Fang, Shanqing Zhang,* and Shengsen Zhang*. Cocatalyst Engineering with Robust Tunable CarbonEncapsulated Mo-Rich Mo/Mo2C Heterostructure Nanoparticle for Efffcient Photocatalytic Hydrogen Evolution. Advanced Functional Materials  202314(33), 2212746.
  6. Wenqing Yu, Ying Wang, Hanwen Zhang, Qiao Zhang,* Shengyang Wang, Zhiting Liu, Guangxing Yang, and Feng Peng*.Mechanistic Insights into the Selective Oxidation of 5-Hydroxymethylfurfural over Au/TiO2 Catalysts under Photoexcited and Dark States. ACS Sustainable Chemistry & Engineering 202313,2318
  7. F. Si, M. M. Wei, M. Li, X. Xie, Q. Gao, X. Cai, S. Zhang, F. Peng, Y. Fang, S. Yang, Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam, Journal of Power Sources, 2022, 538: 231536
  8. Y. Liu, D. Shen, Q. Zhang, Y. Lin, F. Peng, Enhanced photocatalytic CO2 reduction in H2O vapor by atomically thin Bi2WO6 nanosheets with hydrophobic and nonpolar surface, Applied Catalysis B: Environmental, 2021, 283: 119630
  9. S. Yang, H. Guan, Y. Zhong, J. Quan, N. Luo, Q. Gao, Y. Xu, F. Peng, S. Zhang, Y. Fang, CdS@Ni3S2 for efficient and stable photo-assisted electrochemical (P-EC) overall water splitting, Chemical Engineering Journal, 2021, 405: 126231
  10. S. Chen, J. Liao, Z. Zhou, S. Yang, Q. Gao, X. Cai, F Peng, Y. Fang, S. Zhang, Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups, Applied Catalysis B: Environmental, 2021, 291: 120139
  11. Y. Lin, Q. Zhang, Y. Li, Y. Liu, K. Xu, J. Huang, X. Zhou, F. Peng, The Evolution from a Typical Type-I CdS/ZnS to Type-II and Z-Scheme Hybrid Structure for Efficient and Stable Hydrogen Production under Visible Light, ACS Sustainable Chemistry & Engineering, 2020, 8 (11): 4537-4546
  12. Y. Liu, Y. Li, Y. Lin, S. Yang, Q. Zhang, F. Peng, Theoretical calculations and controllable synthesis of MoSe2/CdS-CdSe with highly active sites for photocatalytic hydrogen evolution, Chemical Engineering Journal, 2020, 383: 123133
  13. Y. Liu, B. Wang, Q. Zhang, S. Yang, Y. Li, J. Zuo, H. Wang, F. Peng, A novel bicomponent Co3S4/Co@C cocatalyst on CdS accelerating charge separation for highly efficient photocatalytic hydrogen evolution, Green Chemistry, 2020, 22 (1): 238-247
  14. Y. Liu, Y. Li, X. Li, Q. Zhang, H. Yu, X. Peng, F. Peng, Regulating Electron-Hole Separation to Promote Photocatalytic H2 Evolution Activity of Nanoconfined Ru/MXene/TiO2 Catalysts, ACS Nano, 2020, 14: 14181-14189
  15. X. Yuan, D. Shen, Q. Zhang, G. Yang, B. Zhang, Y. Li, J. Zuo, F. Peng, Highly exposed (001) facets Ni(OH)2 induced formation of nickle phosphide over cadmium sulfide nanorods for efficient photocatalytic hydrogen evolution, International Journal of Hydrogen Energy, 2020, 45 (16): 9397-9407
  16. J. Huang, H. Wang, H. Yu, Q. Zhang, Y. Cao, F. Peng, Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution, ChemSusChem, 2020, 13: 5041-5049
  17. X. Yuan, D. Shen, Q. Zhang, H. Zou, Z. Liu, F. Peng, Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline, Chemical Engineering Journal, 2019, 369: 292-301
  18. J. Huang, Y. Cao, B. Qin, G. Zhong, J. Zhang, H. Yu, H. Wang, F. Peng, Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization, Chemical Engineering Journal, 2019, 361: 547-558
  19. Y. Liu, Y. Li, F. Peng, Y. Lin, S. Yang, S. Zhang, H. Wang, Y. Cao, H. Yu, 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 2019, 241: 236-245
  20. H. Wang, N. Ma, Y. Cao, H. Yu, J. Zuo, W. Fan, F. Peng, Cobalt and cobalt oxide supported on nitrogen-doped porous carbon as electrode materials for hydrogen evolution reaction, International Journal of Hydrogen Energy, 2019, 44(7): 3649-3657
  21. R. Wang, S. Chen, Y.H. Ng, Q. Gao, S. Yang, S. Zhang, F. Peng, Y. Fang, S. Zhang, ZnO/CdS/PbS nanotube arrays with multi-heterojunctions for efficient visible-light-driven photoelectrochemical hydrogen evolution, Chemical Engineering Journal, 2019, 362: 658-666
  22. S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chemical Society Reviews, 2019, 48: 4178-4280
  23. L. Chu, Y. Lin, Y. Liu, H. Wang, Q. Zhang, Y. Li, Y. Cao, H. Yu, F. Peng, Preparation of CdS-CoSx photocatalysts and their photocatalytic and photoelectrochemical characteristics for hydrogen production, International Journal of Hydrogen Energy, 2019, 44(51): 27795-27805
  24. S. Chen, G. Yang, C. Wang, S. Yang, D. Chen, X. Cai, Y. Li, F. Peng, Y. Fang, S. Zhang, Magnetic Fe3C@C nanoparticles as a novel cocatalyst for boosting visible-light-driven photocatalytic performance of g-C3N4, International Journal of Hydrogen Energy, 2019, 44 (49): 26970-26981
  25. J. Huang, Y. Cao, H. Wang, H. Yu, F. Peng, H. Zou, Z. Liu, Revealing active-site structure of porous nitrogen-defected carbon nitride for highly effective photocatalytic hydrogen evolution, Chemical Engineering Journal, 2019, 373: 687-699
  26. J. Hu, Y. Li, S. Zhang, Q. Zhang, Y. Liu, J. Zuo, Q. Li, F. Peng, MoS2 supported on hydrogenated TiO2 heterostructure film as photocathode for photoelectrochemical hydrogen production, International Journal of Hydrogen Energy, 2019, 44: 31008-31019
  27. Y. Liu, Y. Li, S. Yang, Y. Lin, J. Zuo, H. Liang, F. Peng, Revealing the Relationship between Photocatalytic Properties and Structure Characteristics of TiO2 Reduced by Hydrogen and Carbon Monoxide Treatment, ChemSusChem, 2018, 11(16): 2766-2775
  28. J. Hu, S. Zhang, Y. Cao, H. Wang, H. Yu, F. Peng, Novel Highly Active Anatase/Rutile TiO2 Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen, ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10823-10832
  29. Y. Lin, Y. Liu, Y. Li, Y. Cao, J. Huang, H. Wang, H. Yu, H. Liang, F. Peng, Dual Functional CuO1–x Clusters for Enhanced Photocatalytic Activity and Stability of a Pt Cocatalyst in an Overall Water-Splitting Reaction, ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17340-17351
  30. Y. Liu, S. Yang, S. Zhang, H. Wang, H. Yu, Y. Cao, F. Peng, Design of cocatalyst loading position for photocatalytic water splitting into hydrogen in electrolyte solutions, International Journal of Hydrogen Energy, 2018, 43(11): 5551-5560
  31. B. Wang, F. Peng, S. Yang, Y. Cao, H. Wang, H. Yu, S. Zhang, Hydrogenated CdS nanorods arrays/FTO film: A highly stable photocatalyst for photocatalytic H2 production, International Journal of Hydrogen Energy, 2018, 43(37): 17696-17707
  32. X. Yuan, X. Ma, J. Liao, F. Ye, L. Shao, F. Peng, J. Zhang, Low-pollution and controllable selective-area deposition of a CdS buffering layer on CIGS solar cells by a photochemical technique, ACS Sustainable Chemistry & Engineering, 2017, 5: 7325-7333
  33. X. Yuan, J. Yi, H. Wang, H. Yu, S. Zhang, F. Peng, New route of fabricating BiOI and Bi2O3 supported TiO2 nanotube arrays via the electrodeposition of bismuth nanoparticles for photocatalytic degradation of acid orange II, Materials Chemistry and Physics, 2017, 196: 237-44
  34. Y. Lin, S. Yang, Y. Liu, S. Zhang, H. Wang, H. Yu, F. Peng, In-situ photo-deposition CuO1-x cluster on TiO2 for enhanced photocatalytic H2 production activity, International Journal of Hydrogen Energy, 2017, 42: 19942-19950
  35. S. Yang, K. Xu, H. Wang, H. Yu, S. Zhang, F. Peng, Solution growth of peony-like copper hydroxyl-phosphate (Cu-2(OH)PO4) flowers on Cu foil and their photocatalytic activity under visible light, Materials and Design, 2016, 100: 30-36
  36. S. Yang, H. Wang, S. Zhang, Y. Fang, S. Zhang, F. Peng, A facile fabrication of hierarchical Ag nanoparticles-decorated N-TiO2 with enhanced photocatalytic hydrogen production under solar light, International Journal of Hydrogen Energy, 2016, 41: 3446-3455
  37. X. Wang, S. Zhang, B. Peng, H. Wang, H. Yu, F. Peng, Enhancing the photocatalytic efficiency of TiO2 nanotube arrays for H2 production by using non-noble metal cobalt as co-catalyst, Materials Letters, 2016, 165: 37-40
  38. X. Wang, S. Zhang, Y. Xie, H. Wang, H. Yu, Y. Shen, Z. Li, S. Zhang, F. Peng,Branched hydrogenated TiO2 nanorod arrays for improving photocatalytic hydrogen evolution performance under simulated solar light, International Journal of Hydrogen Energy, 2016, 41: 20192-20197
  39. J. Yi, L. Huang, H. Wang, H. Yu, F. Peng, AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity, Journal of Hazardous Materials, 2015, 284: 207-214
  40. J. Yi, X. Yuan, H. Wang, H. Yu, F. Peng. Preparation of Bi2Ti2O7/TiO2 nanocomposites and their photocatalytic performance under visible light irradiation, Materials and Design, 2015, 86: 152-156
  41. S. Zhang, B. Peng, S. Yang, H. Wanga, H. Yua, Y. Fang, F. Peng. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light, International Journal of Hydrogen Energy, 2015, 40: 303-310
  42. S. Yang, S. Zhang, H. Wang, H. Yu, Y. Fang, F. Peng, Controlled preparation of Ag-Cu2O nanocorncobs and their enhanced photocatalytic activity under visible light, Materials Research Bulletin, 2015, 70: 296-302
  43. S. Zhang, S. Zhang, B. Peng, H. Wang, H. Yu, H. Wang, F. Peng, High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light, Electrochemistry Communications, 2014, 40: 24-27
  44. B. Peng, S. Zhang, S. Yang, H. Wang, H. Yu, S. Zhang, F. Peng, Synthesis and characterization of g-C3N4/Cu2O composite catalyst with enhanced photocatalytic activity under visible light irradiation, Materials Research Bulletin, 2014, 56: 19-24
  45. J. Yi, S. Zhang, H. Wang, H. Yu, F. Peng, Fabrication of uniformly dispersed Ag nanoparticles loaded TiO2 nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation, Materials Research Bulletin, 2014, 60: 130-136
  46. S. Yang, S. Zhang, H. Wang, H. Yu, Y. Fang, F. Peng, Facile synthesis of self-assembled mesoporous CuO nanospheres and hollow Cu2O microspheres with excellent adsorption performance, RSC Advances, 2014, 4: 43024-43028
  47. Z. Lai, F. Peng, H. Wang, H. Yu, S. Zhang, H. Zhao. A new insight into regulating high energy facets of rutile TiO2, Journal of Materials Chemistry A, 2013, 1: 4182-4185
  48. S. Zhang, H. Wang, M. Yeung, Y. Fang, H. Yu, F. Peng, Cu(OH)2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production, International Journal of Hydrogen Energy, 2013, 38(18): 7241-7245
  49. S. Zhang, B. Peng, S. Yang, Y. Fang, F. Peng, Influence of the electrodeposition potential on the morphology of Cu2O/TiO2 nanotube arrays and their visible-light-driven photocatalytic activity for hydrogen evolution, International Journal of Hydrogen Energy, 2013, 38(32): 13866-13871
  50. Z. Lai, F. Peng, H. Wang, H. Yu, P. Liu, H. Zhao. Low temperature solvothermal synthesis of anatase TiO2 single crystals with wholly {100} and {001} faceted surfaces, Journal Materials Chemistry, 2012, 22: 23906-23912
  51. X. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, A simple preparation of nitrogen doped titanium dioxide nanocrystals with exposed (001) facets with high visible light activity, Chemical Communications, 2012, 48: 600-602
  52. X. Zhou, B. Jin, L. Li, F. Peng, H. Wang, H. Yu, Y. Fang, A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties, Journal Materials Chemistry, 2012, 22: 17900-17955
  53. X. Zhou, B. Jin, S. Zhang, H. Wang, H. Yu, F. Peng, Preparation of boron and phosphor co-doped TiO2 nanotube arrays and their photoelectrochemical property, Electrochemistry Communications, 2012, 19: 127-130
  54. S. Zhang, C. Liu, X. Liu, H. Zhang, P. Liu, S. Zhang, F. Peng, H. Zhao, Nanocrystal Cu2O-loaded TiO2 nanotube array films as high-performance visible-light bactericidal photocatalyst, Applied Microbiology Biotechnology, 2012, 96: 1201-1207
  55. S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, J. Yang, H. Zhao. Electrodeposition preparation of Ag loaded N-doped TiO2 nanotube arrays with enhanced visible light photocatalytic performance, Catalysis Communications, 2011, 12: 689-693
  56. S. Zhang, F. Peng, H. Zhang, H. Liu, H. Zhao, Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance, Electrochemical Communications, 2011, 13: 861-863
  57. X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances, Electrochemistry Communications, 2011,13: 121-124
  58. X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, Effect of nitrogen-doping temperature on the structure and photocatalytic activity of the B, N-doped TiO2, Journal of Solid State Chemistry, 2011, 184: 134-140
  59. X. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance, Chemical Communications, 2011, 47: 10323-10325
  60. X. Zhou, F. Peng, H. Wang, H. Yu, Boron and nitrogen-codoped TiO2 nanorods: Synthesis, characterization, and photoelectrochemical properties. Journal of Solid State Chemistry, 2011, 184: 3002-3007
  61. X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2, Materials Research Bulletin, 2011, 46: 840-844
  62. L. Huang, F. Peng, H. Wang, H. Yu, W. Geng, J. Yang, S. Zhang, H. Zhao. Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition, Materials Chemistry and Physics, 2011,130: 316-322
  63. L. Huang, F. Peng, H. Yu, H. Wang, J. Yang, Z. Li. The influence of ultrasound on the formation of TiO2 nanotube arrays, Materials Research Bulletin, 2010, 45, 200-204
  64. L. Huang, S. Zhang, F. Peng, H. Wang, H. Yu, J. Yang, S. Zhang and H. Zhao. Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis. Scripta Materialia, 2010, 63: 159-161


热催化方向代表性论文(2010年-至今)


  1. Yongzhao Su, Hongyi Liu, Hongjuan Wang, Jiangnan Huang, Hao Yu, Qiao Zhang, Yonghai Cao,* and Feng Peng*. Insights into ethylbenzene oxidation catalyzed by transition-metal oxides: Crucial role of hydroperoxide transformation,Chemical Engineering Journal2024,479,147594.

  2. Junhao Lan, Qiao Zhang, Guangxing Yang, Zhiting Liu, Feng Peng*.Removal of tetracycline hydrochloride by N, P co-doped carbon encapsulated Fe2P activating PMS: A non-radical pathway dominated by singlet oxygen. Journal of Environmental Chemical Engineering 2023, 11, 110481.

  3. Zhicheng Chen, Yuchan Deng, Guangxing Yang, Ya-Nan Zhu, Qiao Zhang, Zhiting Liu, Yonghai Cao*, Feng Peng*. Understanding of cumene oxidation catalyzed by metal–nitrogen–carbon through theoretical simulations and kinetic validation. ACS Sustainable Chemistry & Engineering202314(11),5773-5781.

  4. Yongzhao Su,  Jiangnan Huang,  Guangxing Yang,  Hongjuan Wang,  Hao Yu,  Qiao Zhang,  Yonghai Cao,*  Feng Peng*. Elucidating mechanism of ethylbenzene oxidation catalyzed by carbon-based catalysts with kinetic modeling. AIChE Journal, 2023, e18007. 

  5. Y. Deng, Z. Chen, J. Huang, G. Yang, Q. Zhang, Z. Liu, Y. Cao, F. Peng, MnO2 nanoparticles supported on CNTs for cumene oxidation: Synergistic effect and kinetic modelling, Chemical Engineering Journal, 2022, 444: 136666

  6. Y. Su, Z. Chen, J. Huang, H. Wang, H. Yu, Q. Zhang, Y. Cao, F. Peng, Confined Cobalt on Carbon Nanotubes in Solvent-free Aerobic Oxidation of Ethylbenzene: Enhanced Interfacial Charge Transfer, ChemCatChem, 2022, 14(2): e202101378

  7. Z. Chen, Y. Li, Y. Cao, Q. Zhang, H. Yu, F. Peng, Inhibitory effect of Zn2+ on the chain-initiation process of cumene oxidation, International Journal of Quantum Chemistry, 2021, 121, e26780.

  8. J. Bai, J. Huang, Q. Jiang, Y. Li, H. Wang, H. Yu, Q. Zhang, Y. Cao, F. Peng, Radical Propagation Facilitating Aerobic Oxidation of Substituted Aromatics Promoted by Tert-Butyl Hydroperoxide, Chemistryselect, 2021, 6, 6895-6903.

  9. Y. Su, Y. Li, Z. Chen, J. Huang, H. Wang, H. Yu, Y. Cao, F. Peng, New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogen-doped Carbon Nanotubes, ChemCatChem, 2021, 13, 646-655

  10. H. Fu, K. Huang, G. Yang, Y. Cao, H. Wang, F. Peng, Q. Wang, H. Yu, Synergistic Effect of Nitrogen Dopants on Carbon Nanotubes on the Catalytic Selective Epoxidation of Styrene, ACS Catalysis, 2020, 10 (1): 129-137

  11. X. Ning, Y. Li, J. Ming, Q. Wang, H. Wang, Y. Cao, F. Peng, Y. Yang, H. Yu, Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction, Chemical Science, 2019, 10(6): 1589-1596

  12. Z. He, B. Dong, W. Wang, G. Yang, Y. Cao, H. Wang, Y. Yang, Q. Wang, F. Peng, H. Yu, Elucidating Interaction between Palladium and N-Doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation, ACS Catalysis, 2019, 9(4): 2893-2901

  13. Z. Meng, Y. Liu, G.X. Yang, Y.H. Cao, H.J. Wang, F. Peng, P.F. Liu, H. Yu, Electron-Rich Ruthenium on Nitrogen-Doped Carbons Promoting Levulinic Acid Hydrogenation to gamma-valerolactone: Effect of Metal-Support Interaction, ACS Sustainable Chemistry & Engineering, 2019, 7 (19): 16501-16510

  14. K. Huang, H. Fu, W. Shi, H. Wang, Y. Cao, G. Yang, F. Peng, Q. Wang, Z. Liu, B. Zhang, H. Yu, Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over Co-N-C, Journal of Catalysis, 2019, 377: 283-292

  15. Y. Su, D. Chen, S. Yang, S. Zhang, Y. Liu, Y. Fang, Q. Zhang, F. Peng, Photoelectrochemical detection of ultra-trace fluorine ion using TiO2 nanorod arrays as a probe, RSC Advances, 2019, 9: 26712-2671

  16. D. Su, G. Wen, S. Wu, F. Peng, R. Schlogl, Carbocatalysis in liquid-phase reactions, Angewandte Chemie-International Edition, 2017, 56: 936-964

  17. X. Ning, Y. Li, H. Yu, F. Peng, H. Wang, Y. Yang, Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone, Journal of Catalysis, 2016, 335: 95-104

  18. C. Dang, H. Yu, H. Wang, F. Peng, Y. Yang, A bi-functional Co-CaO-Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen, Chemical Engineering Journal, 2016, 286: 329-338

  19. Y. Chi, M. Zhu, Y. Li, H. Yu, H. Wang, F. Peng, The effect of surface oxygenated groups of carbon nanotubes on liquid phase catalytic oxidation of cumene, Catalysis Science & Technology, 2016, 6: 2396-2402

  20. H. Wang, C. Peng, F. Peng, H. Yu, J. Yang. Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors, Materials Science and Engineering B, 2011, 176: 1073-1078

  21. Z. Yao, Z. Lai, X. Zhang, F. Peng, H. Yu, H. Wang. Structural stability and mutual transformations of molybdenum carbide, nitride and phosphide, Materials Research Bulletin, 2011, 46: 1938-1941

  22. Z. Yao, X. Zhang, F. Peng, H. Yu, H. Wang, J. Yang. A novel carbothermal reduction nitridation route to MoN nanoparticles on CNTs support, Journal of Materials Chemistry, 2011, 21: 6898-6902

  23. Z. Yao, X. Zhang, F. Peng, H. Yu, H. Wang, J. Yang. Novel highly efficient alumina-supported cobalt nitride catalyst for preferential CO oxidation at high temperatures, International Journal of Hydrogen Energy, 2011, 36: 1955-1959

  24. H. Yu, F. Peng, J. Tan, X. Hu, H. Wang, J. Yang, W. Zheng. Selective Catalysis of the Aerobic Oxidation of Cyclohexane in the Liquid Phase by Carbon Nanotubes, Angewandte Chemie-International Edition, 2011, 50: 3978-3982

  25. G. Yang, H. Yu, F. Peng, H. Wang, J. ang, D. Xie. Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol, Renewable Energy, 2011, 36: 2120-2127

  26. J. Luo, F. Peng, H. Yu, H. Wang. Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes, Chemical Engineering Journal, 2012, 204-206: 98-106

  27. G. Yang, H. Yu, X. Huang, F. Peng, H. Wang, Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol. Applied Catalysis B: Environmental, 2012, 127: 89-98

  28. H. Chen, H. Yu, J. Li, F. Peng, H. Wang, Effect of inlet flow distributor for reagent equalization on autothermal reforming of ethanol in a microreformer, Industrial & Engineering Chemistry Research, 2012, 51: 10132-10139

  29. X. Yang, H. Yu, F. Peng, H. Wang. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane, ChemSusChem, 2012, 5: 1213-1217

  30. X. Yang, H. Wang, J. Li, W. Zheng, R. Xiang, Z. Tang, H. Yu, F. Peng. Mechanistic insight into catalytic oxidation of cyclohexane over carbon nanotubes: kinetics and in-situ spectroscopic evidences, Chemistry A-European Journal, 2013, 19: 9818-9824

  31. Y. Cao, X. Luo, H. Yu, F. Peng, H. Wang, G. Ning, sp(2)- and sp(3) -hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane, Catalysis Science & Technology, 2013, 3(10): 2654-2660

  32. Y. Cao, H. Yu, J. Tan, F. Peng, H. Wang, J. Li, W. Zheng, N. Wong, Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane, Carbon, 2013, 57: 433-442

  33. C. Chen, J. Zhang, F. Peng, D. Su. Efficient functionalization of multi-walled carbon nanotubes by nitrogen dioxide, Materials Research Bulletin, 2013,48: 3218-3222

  34. C. Chen, J. Zhang, B. Zhang, C. Yu, F. Peng, D. Su. Revealing the enhanced catalytic activity of nitrogen-doped carbon nanotubes for oxidative dehydrogenation of propane, Chemical Communications, 2013,49(74): 815-818

  35. J. Luo, F. Peng, H. Wang, H. Yu, Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol, Catalysis Communications, 2013, 39(1): 44-49

  36. J. Luo, F. Peng, H. Yu, H. Wang, W. Zheng, Aerobic liquid-phase oxidation of ethylbenzene to acetophenone catalyzed by carbon nanotubes, ChemCatChem, 2013, 5: 1578-1586

  37. J. Luo, H. Yu, H. Wang, F. Peng, Enhancing the catalytic activity of carbon nanotubes by filled iron nanowires for selective oxidation of ethylbenzene, Catalysis Communications, 2014, 51: 77-81

  38. Y. Wu, H. Yu, H. Wang, F. Peng, Controllable synthesis and catalytic performance of graphene-supported metal oxide nanoparticles, Chinese Journal of Catalysis, 2014, 35: 952-959

  39. Y. Cao, H. Yu, F. Peng, H. Wang, Selective Allylic Oxidation of Cyclohexene Catalyzed by Nitrogen-Doped Carbon Nanotubes, ACS Catalysis, 2014, 4: 1617-1625

  40. S. Liao, F. Peng, H. Yu, H. Wang, Carbon nanotubes as catalyst for the aerobic oxidation of cumene tocumene hydroperoxide, Applied Catalysis A: General, 2014, 478: 1-8

  41. S. Liao, Y. Chi, H. Yu, H. Wang, F. Peng, Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogen-Doped Carbon Nanotubes, ChemCatChem, 2014, 6: 555-560

  42. J. Luo, H. Yu, H. Wang, H. Wang, F. Peng, Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter, Chemical Engineering Journal, 2014, 240: 434-442

  43. Y. Cao, Y. Li, H. Yu, F. Peng, H. Wang, Aerobic oxidation of α-pinene catalyzed by carbon nanotubes, Catalysis Science & Technology, 2015, 5: 3935-3944


科研项目


  1. 国家自然科学基金面上项目、21872041、非金属共掺杂纳米碳材料与金属氧化物协同催化典型芳烃侧链液相氧化研究、2019/01-2022/12、65万、主持、在研。

  2. 广州大学百人计划、环境与能源催化基础研究、2018.01-2022.12,400万元、主持

  3.  国家自然科学基金面上项目、21673080、具有高效太阳光活性的氢化TiO2异相结构设计与光催化作用机制、2017/01-2020/12、65万、主持、已结题

  4.  国家自然科学基金面上项目、21373091、非金属共掺杂碳催化剂电催化氧还原机制及其理性设计方法、2014/01-2017/12、83万、主持、已结题。

  5.  国家自然科学基金重点项目、21133010、纳米碳材料非金属催化作用本质研究、2012/01-2016/12、320万、已结题。(中科院沈阳金属所苏党生研究员主持,彭峰是华南理工大学负责人,经费100万元)。

  6. 广东省科技计划项目、2015A050502012、氢化TiO2结构调变设计与光催化分解水制氢作用机理、2015/03-2017/03、50万、主持、已结题。

  7. 广东国际集团南方碱业有限公司项目、无机化工清洁生产联合实验室研究项目(二期)、2014-2018、主持、已结题

  8.  科技部863计划项目、2009AA05Z102、与燃料电池匹配的乙醇催化重整制氢微系统关键技术、2009/06-2011/06、74万、已验收、主持。

  9. 国家自然科学基金面上项目、20873044、新型TiO2/N-TiO2异质结构光催化剂制备与可见光催化机制、2009/01-2011/12、34万、已结题、主持。

  10. 国家自然科学基金青年基金、29903003、甲醇直接气相羰基化催化化学、2000/01-2002/12、15万、已结题、主持。

  11. 广东省自然科学基金重点项目、9251064101000020、碳纳米管构建的纳米催化材料及其环己烷催化氧化研究、2009/10-2012/10、20万、已结题、主持

  12.  广东国际集团南方碱业有限公司项目、无机化工清洁生产联合实验室研究项目、2009/01-2013/12、100万、已结题、主持。

  13. 香港科技创新署项目、NAMIB26/07、碳纳米管制备以及作为催化载体与先进能源材料的应用、2009/01-2012/12、120万港元(实到60万港元)、已结题、主持。

  14. 新世纪优秀人才支持计划资助(人才项目)、NCET-08-0205、纳米材料与工业催化、2009/01-2011/12、30万、已结题、主持。.

  15. 广州市科技计划项目、2007Z3-D2101、碳纳米管负载高性能纳米氧化钌催化剂、2007/01-2009/12、25万、已结题、主持。

  16. 广东省科技计划项目、2006B-40101014、新型建筑防水功能材料的技术推广、2006/09-2008/12、13万、已结题、主持。

  17. 广东省自然科学基金、05006553、具有可见光活性的纳米复合物材料制备与光催化性能、2006/01-2007/12、6万、已结题、主持。

  18. 广东省科技计划项目、2005A-10702002、可见光活性纳米材料制备与分散关键技术、2005/09-2008/09、20万、已结题、主持。

  19. 广州市科技计划项目、2003Z3-D2071、甲醇直接气相羰基化纳米催化技术、2003/09-2005/12、20万、已结题、主持


主要学术任职


【1】国内核心刊物《工业催化》第三届,第四届,第五编委会委员(2007年-至今);《化工科技》编委会委员(2007年-至今);

【2】中国颗粒学会,第六届理事会理事(2014.5-至今);

【3】担任第十五届全国催化学术大会副主席(2010年);

【4】国家自然科学基金化学部,材料工程学部函审专家;


获奖情况


【1】2010年获教育部自然科学二等奖(排名第二/共9人),“质子交换膜燃料电池的应用基础研究”(2010-101)。

【2】2010年入选广东省“千百十工程”人才计划“省级培养”人才。

【3】2008年人选国家教育部“新世纪优秀人才支持计划”。