In this paper, a novel, simple and mild soft template assisted strategy and further carbonization approach has been constructed to the size-tunable preparation of porous Cu-N-C/Surfactant catalysts successfully. Note that the pluronic F127 has a significant influence on the synthesis of porous Cu-N-C/F127 with the atomically dispersed Cu-N4 and adjacent Cu atomic clusters (ACs) than other surfactants owing to their particular non-ionic structure. By combining a series of experimental analysis and density functional theory (DFT) calculations, the synergistic effects between the adjacent Cu ACs and atomically dispersed Cu-N4 are favorable for manipulating the binding energy of O2 adsorption and intermediates desorption at the atomic interface of catalysts, resulting in an excellent electrocatalytic ORR performance with a faster kinetics for Cu-N-C/F127 than those of the Cu-N-C, Cu-N-C/CTAB, Cu-N-C/SDS, and comparable with the commercial Pt/C catalyst. This method not only provides a novel approach for synthesizing highly effective copper based single atom catalysts toward ORR, but also offers an in-depth understanding of the synergisms of adjacent ACs on the Cu single atoms (SAs) for highly effective electrocatalytic ORR and Zn-air Battery.
祝贺课题组最新工作在Journal of Colloid and Interface Science发表!
发布时间:2024-07-11