刘敏
中南大学教授,博士生导师,2020-2022科睿唯安高被引学者,入选国家引进海外杰出人才,国家重点研发计划国际合作项目首席科学家,湖南省杰出青年,湖南省“青年百人计划”,湖南省科技创新平台与人才计划,长沙市国家级领军人才,粉末冶金国家重点实验室、超微结构与超快过程湖南省重点实验室、化学电源湖南省重点实验室成员。湖南师范大学理学学士、硕士,中科院电工所工学博士。2010-2013年日本东京大学Kazuhito Hashimoto(桥本和仁)教授研究室特聘研究员、2013-2015,东京大学Kazunari Domen(堂免一成)教授研究室主任研究员,2015-2017年加拿大多伦多大学Ted Sargent组博士后,之后加入中南大学。
近年来在能源转化、催化材料及器件领域取得了多项创新成果,在Nature, Science, Nature Nanotechnology, Nature Photonics, Nature Chemistry, Nature Communications, Science Advances, Joule等国际权威学术期刊上发表论文150余篇,论文他引>13000次,H-因子为51, 相关研究成果多次被 Science Daily, Science News, Phys.org, 福布斯等新闻媒体报道。担任30余个国际主要学术期刊审稿人。申请中国、加拿大日本发明专利30余项,其中20项已经授权。博士毕业论文被评为2011年中科院优秀博士论文。
欢迎本科生、硕士生、博士生与博士后加入研究团队!
本课题组与加拿大、美国、日本等著名高等学府建立了良好的合作关系,每年有出国开会、实验及交流机会,并可以推荐到国外名校!
要求:做事认真,善于沟通,敢想敢干,执行力强!
课题组博士后招聘信息:http://muchong.com/t-14978067-1
代表性成果:
1. Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature, 2020,581,178.
2. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy,Nature,2017, 544, 75-79.
3. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration,Nature,2016, 537, 382.
4. Homogeneously dispersed multimetal oxygen-evolving catalysts,Science,2016, 352, 333-337
5. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons,Nature chemistry 2018, 10, 974.
6. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption,Nature chemistry,2018, 10, 149.
7. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids,Nature nanotechnology 2018,13, 456.
8. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers, Nature nanotechnology 2021, 16, 1371.
9. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination,Nature Photonics, 2018, 12, 159.
10. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules,Nature Energy 2019, 4, 107.
11. Missing-linker metal-organic frameworks for oxygen evolution reaction,Nature Communications, 2019,10, 5048.
12. Mixed-quantum-dot solar cells,Nature Communications,2017, 8, 1325
13. Field-emission from quantum-dot-in-perovskite solids,Nature Communications,2017, 8, 14757
14. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction, Nature Communications,2020, 11, 4173.
15. Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity, Nature Communications, 2020, 11, 5368
16. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution, Nature Communications, 2021, 12, 1369.
17. Biofunctionalized conductive polymers enable efficient CO2 electroreduction, Science Advances, 2017, 3 (8), e1700686.
18. Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction, Joule, 2019, 3, 1703.
19. Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation, Joule, 2018, 2, 549.
20. Product selectivity of photocatalytic CO2 reduction reactions, Materials Today, 2019, 32, 222.
21. Chemical Identification of Catalytically Active Sites on Oxygen‐doped Carbon Nanosheet to Decipher the High Activity for Electro‐synthesis Hydrogen Peroxide, Angewandte Chemie International Edition 2021, 60, 16607.
22. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution, Angewandte Chemie International Edition 2022, 134, e202113664.
23. Atomically Dispersed s-Block Magnesium Sites for Electroreduction of CO2 to CO, Angewandte Chemie International Edition 2021, 60, 25241.
24. Low‐Valence Znδ+ (0<δ<2) Single‐Atom Material as Highly Efficient Electrocatalyst for CO2 Reduction, Angewandte Chemie International Edition 2021, 60, 22826.
25. Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C2 Hydrocarbons in the CO2 Electroreduction, Nano Letters, 2022, 22, 1963.
26. Accelerating CO2 Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles, Journal of the American Chemical Society, 2022, 144, 3039.
教育经历
[1] 2007.9-2010.6
中科院电工研究所 | 电工理论与新技术 | 博士学位 | 博士研究生毕业
[2] 2004.9-2007.6
湖南师范大学 | 凝聚态物理 | 硕士学位 | 硕士研究生毕业
[3] 2000.9-2004.6
湖南师范大学 | 物理学 | 学士学位 | 本科
工作经历
[1] 2017.8-至今
中南大学 | 物理与电子学院,先进材料超微结构与超快过程研究所 | 教授
[2] 2015.3-2017.7
加拿大多伦多大学 | 电子与计算机系 | 博士后研究员 (Research Associate) | 导师:Ted Sargent
[3] 2013.5-2015.2
日本东京大学 | 化学系统与工程系 | 主任研究员 | 导师:Kazunari Domen
[4] 2010.7-2013.4
日本东京大学 | 先端科学技术研究所 | 特任研究员 | 导师:kazuhito Hashimoto
[5] 2012.4-2013.3
日本东京工业大学 | 材料科学系 | 访问科学家 (Visiting Scientist) | 导师:Masahiro Miyauchi
社会兼职
[1] 2019.1-2022.12
湖南省催化与绿色化学专业委员会 副主任[2] 2012.1-至今
受邀担任Nat. Catal., Nat. Commun., JACS, Angew, AM, AEM, AFM, APL, JPCC, Chem. Sci., Joule, Chem. Commun., Nanoscale, Appl. Surf. Sci., 等20余种国际期刊审稿人[3] 美国材料学会,美国电化学学会,中国化学会,中国化学化工协会会员
[4] 2016.1-2018.12
国际杂志《Journal of Nanomaterials》,《Electrochemistry》客座编辑[5] 2012.1-2016.12
湖南省光学学会理事