清华大学核能与新能源技术研究院聘请Prof Omar M. Yaghi为“清华大学名誉教授” 的申请近日被批准。聘请仪式计划于2022年1月13日下午7点(美国太平洋时间,北京时间14号中午11点)线上举行。Yaghi教授将为我们带来精彩学术报告,报告将进行公开“视频直播”。报告将在本公众号中“视频直播”。请大家关注本公众号,收看视频直播。
奥马尔·亚吉在金属有机骨架等方面贡献了开创性工作。他和他的研究团队设计并备了金属有机骨架(MOFs),沸石咪唑酯骨架结构材料(ZIFs),共价有机骨架(COFs),他们是一类具有高比表面积、低晶体密度的化合物。同时,他也成功的把这些材料从基础科学领域带入应用领域,其中包括清洁能源(氢气,甲烷)储存、二氧化碳吸附和储存。
详细介绍见http://yaghi.berkeley.edu/
奥马尔·亚吉(Omar M. Yaghi)
1965年生于约旦首都安曼。美籍约旦裔化学家,美国科学院院士、加州大学伯克利分校James和NeeltjeTretter讲席教授、劳伦斯伯克利国家实验室材料科学部主任。1990年博士毕业于伊利诺伊大学厄巴纳分校,同年赴哈佛大学从事博士后研究,1992年在亚利桑那州立大学任助理教授,1999年在密歇根大学任教授,2006年任加州大学洛杉矶分校教授,2012年起在加州大学伯克利分校任教授。1998年, Yaghi教授获得美国化学会固态化学奖;2006年,被大众科学杂志评为“美国十大杰出科学家”;2007年获得美国能源部储氢计划杰出贡献奖、美国材料研究学会奖章;2009年获得美国化学学会材料化学奖;2013年获得中国纳米奖;2017年获得英国皇家化学学会斯皮尔斯纪念奖;2018年,Yaghi教授因“通过金属有机框架和共价有机框架开创了网状化学”,获得沃尔夫化学奖。此外,Yaghi教授多次获得诺贝尔化学奖提名。目前担任《美国化学会志》(Journalof American Chemical Society)副主编。
Yaghi教授是金属有机骨架(MOFs)和共价有机框架(COFs)领域的开拓者和奠基人。他在功能多孔材料的合成及其储能等领域的应用有深入的研究,并取得了杰出的研究成果,共发表270多篇学术论文,其中29篇发表在Science和Nature杂志上,论文被引137,000余次,其hindex(143)在世界化学家中排名第2位。
聘请仪式计划于2022年1月13日下午7点(美国太平洋时间,北京时间14号中午11点)线上举行。Yaghi教授将为我们带来精彩学术报告。报告将在本公众号中“视频直播”。请大家关注本公众号,收看视频直播。
【背景】核能与新能源技术研究院于2018年引进徐宏博士。徐宏博士在COF领域开创性地设计出高稳定性的材料,为COF材料的应用奠定了基础。
个人简介-徐宏
徐宏,博士,1987年生,2005年-2012年在上海交通大学学习并获学士、硕士学位,2015年在日本国立分子科学研究所获博士学位,同年到美国康奈尔大学从事博士后研究工作。2018年7月起受聘清华大学核能与新能源技术研究院。现为清华大学副教授,博士生导师。主要研究方向为有机多孔材料,有机/无机纳米材料,极紫外光刻材料,锂离子电池,量子化学计算等。
徐宏主要学术贡献
共价有机框架(COF)在被发现的10年来,一直是化学领域的热门研究课题,但是,不稳定性使得这类化合物很难成为有用的材料,一直是亟需解决却又难以克服的挑战。徐宏博士的工作很好的解决了这一难题,为COFs研究领域做出了重大贡献。徐宏博士的工作对化学学科的发展具有重要贡献。
共价有机框架是一类通过共价键链接的多孔结晶性聚合物。材料的结晶性来源于热力学控制的可逆聚合反应,非能量最低构象的热力学不稳定性致使其在合成时就被再次分解。COF的通道阵列和高比表面积在气体分离/储存,非均相催化,离子传输等方面有着广泛的应用前景。然而极差的化学稳定性,严重地限制其实际应用。
徐宏博士通过亚胺类COF层间堆积能研究,提出亚胺构筑单元中引入给电子侧基提高层间堆积能的策略。在引入甲氧基之后,亚胺COF的结晶性从几乎无规的聚合物提升至高度结晶的水平,所带来的规整结构使材料内部塌陷得以避免,其比表面积接近材料的理论值,达到了二维COF最好水平。同时,材料层间堆积能的提高使得化学稳定性得到了极大的改善,解决了遇质子溶剂(水)不稳定的问题,并可在各类有机溶剂中稳定存在,甚至在苛刻的极端条件:12M盐酸、14M氢氧化钠,甚至100 ˚C沸水水解7天,结晶性和比表面积依然不变;而传统的高比表面积COF在室温条件下就会被微量湿气所分解。该研究成果解决了长期困扰COF领域的结晶性,多孔性,稳定性三者难以兼得的挑战,成果发表于Nature Chemistry(2015, 7, 905)。沿袭这一设计思路,徐宏博士成功研发了多个高综合性能的COF,成果发表于JACS(2017, 139,2428)和Science(2017, 357,673)。并实现了首例基于COF 的无水质子传导材料(Nature Mater. 2016, 15,722; Nature Chem. 2014, 6, 564),首例基于COF的非均相手性催化剂 (Nature Chem. 2015, 7,905; Chem. Commun. 2014, 50, 1292)。以及储能材料(Angew. Chem. Int. Ed. 2015, 54,6814; Chem. Commun. 2017, 53,11334.),光电材料(Science 2017, 357, 673; NatureCommun. 2015, 6,7786; J. Am. Chem. Soc. 2015, 137, 3241),二氧化碳捕捉材料(Chem. Commun. 2017, 53,4242),污水处理材料(J.Am. Chem. Soc. 2017, 139, 2428),储氢(Journal of theAmericanChemical Society,2021, 143,92-96; Chemistry of Materials,published online), 锂离子电池(Energy StorageMaterials, 2020,33, 360-381;Energy StorageMaterials, 2020,33, 188-215;Advanced EnergyMaterials, 2020,10;Chemical Communications, 2020,56, 10465 – 10468;Advanced Materials,2021,e2106335;Energy& Environmental Materials,2021;Nature Communications,2021,accepted)。
尽管COF材料在很多基于规整多孔特性的领域(如非均相催化,离子传输)具有很好的应用前景,但长期以来稳定性差使其无法实现。徐宏的贡献在于,大幅度地提高结晶性和多孔性的同时,材料极其稳定。基于这一重大进步,COF材料的诸多功能化开发得以实现。
新能源研究—新型能源与材料化学研究室
清华大学核能与新能源技术研究院于上个世纪九十年代初期,组建了新型能源与材料化学研究团队--新型能源与材料化学研究室,先后开展了镍氢电池、燃料电池和锂离子电池及材料的研发。承担了国家“973”项目10多项、“863”项目10多项和自然科学基金项目20多项。开展国际合作项目20多项,横向技术转让和技术服务项目100多项。已发表SCI论文750多篇,授权发明专利500多项。并为国家培养了一批技术领军人才。研究团队拥有SEM、粉体XRD、软包电池透射XRD,BET、TGA/DSC、ARC等大型仪器和5千多万元的专用仪器和测试设备,2千多平米的实验室,包括低露点的干燥房和洁净间,可进行高端材料化学合成以及新型锂离子电池试验装配和高质量燃料电池电堆组装及系统集成。
研究团队目前主要围绕氢能燃料电池和二次电池领域的关键材料和关键技术,开展前沿创新研究,以及核心部件、系统集成与控制技术的应用基础研究与工程开发。针对新能源汽车和新能源储能的重大需求,重点研发高安全性、长寿命、环境友好的新型电源(能源)技术。研究团队目前主要开展物理吸附储氢技术、超高比能量锂电池技术、动力电池安全性技术、低成本长寿命燃料电池技术、中低温固体氧化物燃料电池和新能源储能技术等领域的研究。
高性能电池前沿技术创新研究
20多年来,研究团队在锂离子电池领域取得多项技术成果并实现了产业化,例如高密度、高活性镍氢电池正极材料,高性能钴酸锂、锰酸锂、镍钴锰酸锂、磷酸铁锂等系列锂离子电池正极材料,以及隔膜改性技术、补锂技术和电池一致性测试技术等等。随着我国锂离子电池产业的逐步成熟,研究团队把更多力量投入到下一代电池技术的创新研究中,取得了多项具有自主知识产权的原始创新成果。部分成果近期正在开展产业化技术研发,例如红磷负极技术(r-P)和锂金属负极技术(Li metal)。目前正在进行新型快充电磷碳电池和下一代500Wh/kg电池的研发工作。
多孔材料物理吸附储氢技术
共价有机框架(Covalent Organic Frameworks,COFs)是一类由共价键连接的有机多孔结晶性聚合物,具有高度有序的孔道结构和高比表面积,在气体吸附及储存、光电转换、非均相催化、能源存储及转换领域有着广阔的应用前景。然而,由于缺乏行之有效的功能化方法以及COF本身稳定性的问题,对该类材料功能化开发的报道十分有限。基于晶体堆积能理论,核研院成功的开发出了兼具极高结构稳定性和高比表面积的COFs,解决了COF材料的稳定性问题。在此基础之上,开发了基于COF的无水质子传导材料,氢氧根传导材料,非均相催化剂以及储氢材料。
半导体极紫外光刻胶技术
目前半导体关键技术中,极紫外(Extreme Ultraviolet,EUV)光刻是一种采用波长13.5 nm极紫外光为工作波长的投影光刻技术,技术难度大、瓶颈多。由于国际上最先进EUV光源的稳定光功率只有250 W,现有聚合物EUV光刻胶因为曝光剂量高,导致EUV光刻技术面临产能低、成本高、设备技术遭遇垄断等问题。而高感光EUV光刻胶可有效突破上述所有瓶颈。核研院研发成功具有自主知识产权的尺寸最小的金属有机团簇光刻胶,曝光剂量可低于Intel公司提出的20 mJ/cm2的成本线;在分辨率方面,已实现13 nm的密集图形,可满足3.5 nm制程技术的分辨率要求。
1 Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials, 35, 353-377,doi:10.1016/j.ensm.2020.11.021 (2021).
2 Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat, doi:10.1002/inf2.12228 (2021).
3 Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 36, 147-170,doi:10.1016/j.ensm.2020.12.027 (2021).
4 Benzophenone asindicator detecting lithium metal inside solid state electrolyte. Journalof Power Sources, 492, 229661, doi:10.1016/j.jpowsour.2021.229661(2021).
5 Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-IonBatteries. ACS Energy Letters, 6, 3719-3724,doi:10.1021/acsenergylett.1c01713 (2021).
6 Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered bymultiple stimuli. Matter, doi:10.1016/j.matt.2021.08.009 (2021).
7 Development ofcathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 37, 77-86, doi:10.1016/j.ensm.2021.02.001(2021).
8 In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries. Energy Storage Materials, 43, 248-257,doi:10.1016/j.ensm.2021.09.007 (2021).
9 High-Voltage andHigh-Safety Practical Lithium Batteries with Ethylene Carbonate-FreeElectrolyte. Advanced Energy Materials, doi:10.1002/aenm.202102299 (2021).
10 Nonflammable Pseudoconcentrated Electrolytes for Batteries.Current Opinion inElectrochemistry, 30, doi:10.1016/j.coelec.2021.100783(2021).
11 Correlation betweenthermal stabilities of nickel‐rich cathode materials and battery thermalrunaway. International Journal of Energy Research, doi:10.1002/er.7143(2021).
12 From separator tomembrane: separators can function more in lithium ion batteries. Electrochemistry Communications, 124, doi:10.1016/j.elecom.2021.106948(2021).
13 Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretchingderived nanoporous non-shrinkage separator for safe lithium-ion batteries. AdvancedMaterials, e2106335, doi:10.1002/adma.202106335 (2021).
14 Impact oflithium‐ion coordination on lithium electrodeposition. Energy & Environmental Materials, doi:10.1002/eem2.12266 (2021).
15 Suppression oflithium dendrite by aramid nanofibrous aerogel separator. Journal of Power Sources, 515,doi:10.1016/j.jpowsour.2021.230608 (2021).
16 A practical approach to predict volume deformation of lithium ion batteries from crystalstructure changes of electrode materials.International Journal of Energy Research,doi:1002/ER.6355 (2021).
17 Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-IonBatteries under Thermal Abuse Condition. Energy Storage Materials, 34,563-573, doi:https://doi.org/10.1016/j.ensm.2020.10.020(2021).
18 Anodic Stabilitiesof Various Metals as the Current Collector in High Concentration Electrolytes for Lithium Batteries. Journal of the Electrochemical Society, 168,doi:10.1149/1945-7111/abe8ba (2021).
19 Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 6, 1839–1848,doi:10.1021/acsenergylett.1c00365 (2021).
20 In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications, 12, 4235,doi:10.1038/s41467-021-24404-1 (2021).
21 Internal shortcircuit evaluation and corresponding failure mode analysis for lithium-ionbatteries. Journal of Energy Chemistry, 61, 269-280,doi:10.1016/j.jechem.2021.03.025 (2021).
22 Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American ChemicalSociety, 143, 92-96, doi:10.1021/jacs.0c11313 (2021).
23 Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 85, doi:10.1016/j.nanoen.2021.105878 (2021).
24 Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-EnergyBattery Modules. Energy Storage Materials, 40, 329-336,doi:10.1016/j.ensm.2021.05.018 (2021).
25 Phosphorus-dopedlithium- and manganese-rich layered oxide cathode material for fast charginglithium-ion batteries. Journal of Energy Chemistry, 62,538-545, doi:10.1016/j.jechem.2021.04.026 (2021).
26 Thermal runaway oflithium‐ion batteries employing flame‐retardant fluorinated electrolytes. Energy& Environmental Materials, doi:10.1002/eem2.12297 (2021).
27 Unlocking theself-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 39, 395-402,doi:10.1016/j.ensm.2021.04.035 (2021).
28 PEO based polymer-ceramic hybrid solid electrolytes: a review.Nano Convergence, 8,2, doi:10.1186/s40580-020-00252-5 (2021).
29 Unexpected electocatalytic activity of a micron-sized carbon sphere-graphene (MS-GR)supported palladium composite catalyst for ethanol oxidation reaction (EOR). Materials Chemistry and Physics, 259,doi:10.1016/j.matchemphys.2020.124035 (2021).
30 A review oflithium-ion battery safety concerns: the issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83-99,doi:10.1016/j.jechem.2020.10.017 (2021).
31 In situ formationof ionically conductive nanointerphase on Si particles for stable batteryanode. Science China Chemistry, 64, 1417-1425, doi:10.1007/s11426-021-1023-4(2021).
32 Investigating thethermal runaway features of lithium-ion batteries using a thermal resistancenetwork model. Applied Energy, 295, doi:10.1016/j.apenergy.2021.117038(2021).
33 The opportunity ofmetal organic frameworks and covalent organic frameworks in lithium (ion)batteries and fuel cells. Energy Storage Materials, 33,360-381, doi:10.1016/j.ensm.2020.08.028 (2020).
34 A Facile Approachto High Precision Detection of Cell-to-Cell Variation for Li-ion Batteries. Scientific Reports, 10, 7182, doi:10.1038/s41598-020-64174-2 (2020).
35 An Empirical Modelfor the Design of Batteries with High Energy Density. ACS Energy Letters, 5,807-816, doi:10.1021/acsenergylett.0c00211 (2020).
36 Reviewing theCurrent Status and Development of Polymer Electrolytes for Solid-State LithiumBatteries. Energy Storage Materials, 33, 188-215, doi:https://doi.org/10.1016/j.ensm.2020.08.014(2020).
37 Thickness variationof lithium metal anode with cycling. Journal of Power Sources, 476,doi:10.1016/j.jpowsour.2020.228749 (2020).
38 AcceleratedLithium-ion Conduction in Covalent Organic Frameworks. Chemical Communications, 56,10465 - 10468, doi:10.1039/D0CC04324A (2020).
39 CountersolventElectrolytes for Lithium-Metal Batteries.Advanced Energy Materials, 10,doi:10.1002/aenm.201903568 (2020).
40 Confining ultrafineLi3P nanoclusters in porous carbon for high-performance lithium-ion battery anode.Nano Research, 13, 1122-1126, doi:10.1007/s12274-020-2756-2 (2020).
41 Recycling of Ligninand Si Waste for Advanced Si/C Battery Anodes. ACS Appl Mater Interfaces, 12,57055-57063, doi:10.1021/acsami.0c16865 (2020).
42 Comparative studyon substitute triggering approaches for internal short circuit in lithium-ionbatteries. Applied Energy, 259, 13,doi:10.1016/j.apenergy.2019.114143 (2020).
43 Toward aHigh-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and EnhancedBattery Safety. Nano Energy, 71, doi:10.1016/j.nanoen.2020.104643(2020).
44 Large-scalesynthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3coating for stable cathode cycling.SCIENCE CHINA Materials, 63,1683-1692, doi:10.1007/s40843-020-1327-8 (2020).
45 Thermal runaway ofLithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 11, 5100,doi:10.1038/s41467-020-18868-w (2020).
46 A polymericcomposite protective layer for stable Li metal anodes. Nano Convergence, 7,21, doi:10.1186/s40580-020-00231-w (2020).
47 PVDF-HFP/LiFcomposite interfacial film to enhance the stability of Li-metal anodes. ACS Applied Energy Materials, 3, 7191-7199,doi:10.1021/acsaem.0c01232 (2020).
48 Mitigating ThermalRunaway of Lithium-Ion Batteries. Joule, 4,743-770, doi:10.1016/j.joule.2020.02.010 (2020).
49 A reliable approachof differentiating discrete sampled-data for battery diagnosis. eTransportation, 3,doi:10.1016/j.etran.2020.100051 (2020).
50 Honeycomb-shaped carbonparticles prepared from bicycle waste tires for anodes in lithium ionbatteries. Materials Chemistry and Physics, 251,doi:10.1016/j.matchemphys.2020.123202 (2020).
51 Preparation of CuBrnanoparticles on the surface of the commercial copper foil via a soaking methodat room temperature: Its unexpected facilitation to the discharge capacity ofthe commercial graphite electrode. Journal of Electroanalytical Chemistry, 877,doi:10.1016/j.jelechem.2020.114626 (2020).
52 An ionicliquid-present hydrothermal method for preparing hawthorn sherry ball shapedpalladium (Pd)-based composite catalysts for ethanol oxidation reaction (EOR). International Journal of Hydrogen Energy, 45, 1930-1939,doi:10.1016/j.ijhydene.2019.11.110 (2020).
53 An Exploration ofNew Energy Storage System: High Energy Density, High Safety, and Fast ChargingLithium Ion Battery. Advanced Functional Materials, 29,doi:10.1002/adfm.201805978 (2019).
54 New Organic Complexfor Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, andSafety Performances. ACS Energy Letters, 4,656-665, doi:10.1021/acsenergylett.9b00032 (2019).
55 Red phosphorusfilled biomass carbon as high-capacity and long-life anode for sodium-ionbatteries. Journal of Power Sources, 430, 60-66, doi:10.1016/j.jpowsour.2019.04.086(2019).
56 Design of RedPhosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batterieswith High Energy Density. Joule, 3,1080-1093, doi:10.1016/j.joule.2019.01.017 (2019).
57 A comparativeinvestigation of aging effects on thermal runaway behavior of lithium-ionbatteries. eTransportation, 2, doi:10.1016/j.etran.2019.100034(2019).
58 Overchargebehaviors and failure mechanism of lithium-ion batteries under different testconditions. Applied Energy, 250, 323-332,doi:10.1016/j.apenergy.2019.05.015 (2019).
59 Corrosionresistance mechanism of chromate conversion coated aluminium current collectorin lithium-ion batteries. Corrosion Science, 158,108100, doi:10.1016/j.corsci.2019.108100 (2019).
60 Conformal HollowCarbon Sphere Coated on Sn4P3 Microspheres as High-Rate and Cycle-Stable AnodeMaterials with Superior Sodium Storage Capability. ACS Applied Energy Materials, 2,1756-1764, doi:10.1021/acsaem.8b01885 (2019).
61 Hollow NiCoSe2microspheres@N-doped carbon as high-performance pseudocapacitive anodematerials for sodium ion batteries.Electrochimica Acta, 310,230-239, doi:10.1016/j.electacta.2019.04.124 (2019).
62 Investigating thethermal runaway mechanisms of lithium-ion batteries based on thermal analysisdatabase. Applied Energy, 246, 53-64,doi:10.1016/j.apenergy.2019.04.009 (2019).
63 Probing the heatsources during thermal runaway process by thermal analysis of different batterychemistries. Journal of Power Sources, 378, 527-536, doi:10.1016/j.jpowsour.2017.12.050(2018).
64 Electrochemicalactivation, voltage decay and hysteresis of Li-rich layered cathode probed byvarious cobalt content. Electrochimica Acta, 265,115-120, doi:10.1016/j.electacta.2018.01.181 (2018).
65 An Exploration of NewEnergy Storage System: High Energy Density, High Safety, and Fast ChargingLithium Ion Battery. Advanced Functional Materials, 29,doi:10.1002/adfm.201805978 (2018).
66 Model-based thermalrunaway prediction of lithium-ion batteries from kinetics analysis of cellcomponents. Applied Energy, 228, 633-644,doi:10.1016/j.apenergy.2018.06.126 (2018).
67 PseudoconcentratedElectrolyte with High Ionic Conductivity and Stability Enables High-VoltageLithium-Ion Battery Chemistry. ACS Applied Energy Materials, 1,5446-5452, doi:10.1021/acsaem.8b01020 (2018).
68 Thermal Runaway ofLithium-Ion Batteries without Internal Short Circuit. Joule, 2,2047-2064, doi:10.1016/j.joule.2018.06.015 (2018).
69 Protecting Al foilsfor high-voltage lithium-ion chemistries.Materials Today Energy, 7,18-26, doi:10.1016/j.mtener.2017.12.001 (2018).
70 Detecting theinternal short circuit in large-format lithium-ion battery using model-basedfault-diagnosis algorithm. Journal of Energy Storage, 18,26-39, doi:10.1016/j.est.2018.04.020 (2018).
71 Time Sequence Mapfor Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries WithLiNixCoyMnzO2 Cathode.Frontiers in Energy Research, 6,doi:10.3389/fenrg.2018.00126 (2018).
72 Mechanisms for theevolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ionbattery pack caused by temperature non-uniformity. Journal of Cleaner Production, 205,447-462, doi:10.1016/j.jclepro.2018.09.003 (2018).
73 Thermal runawaymechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267,doi:10.1016/j.ensm.2017.05.013 (2018).
74 A CoupledElectrochemical-Thermal Failure Model for Predicting the Thermal RunawayBehavior of Lithium-Ion Batteries.Journal of the Electrochemical Society, 165,A3748-A3765, doi:10.1149/2.0311816jes (2018).
75 Analysis on theFault Features for Internal Short Circuit Detection Using anElectrochemical-Thermal Coupled Model. Journal of the Electrochemical Society, 165,A155-A167, doi:10.1149/2.0501802jes (2018).
76 Using PdO and PbOas the starting materials to prepare a multi-walled carbon nanotubes supportedcomposite catalyst (PdxPby/MWCNTs) for ethanol oxidation reaction (EOR). International Journal of Hydrogen Energy, 43, 1523-1528,doi:10.1016/j.ijhydene.2017.11.142 (2018).
77 K0.83V2O5: A NewLayered Compound as a Stable Cathode Material for Potassium-Ion Batteries. ACS Appl Mater Interfaces, 12, 9332-9340,doi:10.1021/acsami.9b22087 (2020).
78 A highly soluble,crystalline covalent organic framework compatible with device implementation. Chemical Science, 10, 1023-1028, doi:10.1039/c8sc04255a (2019).
79 Three-DimensionalPrinting of Hierarchical Porous Architectures.Chemistry of Materials, 31,10017-10022, doi:10.1021/acs.chemmater.9b02761 (2019).
80 Metal-OrganicFramework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chemistryof Materials, 30, 4124-4133,doi:10.1021/acs.chemmater.8b01573 (2018).
81 Designed synthesisof stable light-emitting two-dimensional sp(2) carbon-conjugated covalentorganic frameworks. Nature Communications, 9, doi:10.1038/s41467-018-06719-8(2018).
82 A backbone designprinciple for covalent organic frameworks: the impact of weakly interacting unitson CO2 adsorption. Chemical Communications, 53, 4242-4245,doi:10.1039/c7cc01921a (2017).
83 Two-dimensionalsp(2) carbon-conjugated covalent organic frameworks. Science, 357,673-676, doi:10.1126/science.aan0202 (2017).
84 Stable CovalentOrganic Frameworks for Exceptional Mercury Removal from Aqueous Solutions. Journalof the American Chemical Society, 139, 2428-2434,doi:10.1021/jacs.6b12328 (2017).
85 Bicarbazole-basedredox-active covalent organic frameworks for ultrahigh-performance energy storage.Chemical Communications, 53, 11334-11337, doi:10.1039/c7cc07024a(2017).
86 Proton conductionin crystalline and porous covalent organic frameworks. Nature Materials, 15,722-+, doi:10.1038/nmat4611 (2016).
87 Stable,crystalline, porous, covalent organic frameworks as a platform for chiralorganocatalysts. Nature Chemistry, 7, 905-912, doi:10.1038/nchem.2352(2015).
88 Radical CovalentOrganic Frameworks: A General Strategy to Immobilize Open-AccessiblePolyradicals for High-Performance Capacitive Energy Storage. Angewandte Chemie-International Edition, 54, 6814-6818,doi:10.1002/anie.201501706 (2015).
89 A pi-electroniccovalent organic framework catalyst: pi-walls as catalytic beds for Diels-Alderreactions under ambient conditions.Chemical Communications, 51,10096-10098, doi:10.1039/c5cc03457d (2015).
90 Design of HighlyPhotofunctional Porous Polymer Films with Controlled Thickness and ProminentMicroporosity. Angewandte Chemie-International Edition, 54,11540-11544, doi:10.1002/anie.201504786 (2015).
91 pi-ConjugatedMicroporous Polymer Films: Designed Synthesis, Conducting Properties, andPhotoenergy Conversions. Angewandte Chemie-International Edition, 54,13594-13598, doi:10.1002/anie.201506570 (2015).
92 Rational design ofcrystalline supermicroporous covalent organic frameworks with triangulartopologies. Nature Communications, 6, doi:10.1038/ncomms8786 (2015).
93 Locking CovalentOrganic Frameworks with Hydrogen Bonds: General and Remarkable Effects onCrystalline Structure, Physical Properties, and Photochemical Activity. Journalof the American Chemical Society, 137, 3241-3247,doi:10.1021/ja509602c (2015).
94 Covalent organicframeworks Crossing the channel. Nature Chemistry, 6,564-566, doi:10.1038/nchem.1984 (2014).
95 Catalytic covalentorganic frameworks via pore surface engineering. Chemical Communications, 50,1292-1294, doi:10.1039/c3cc48813f (2014).
96 Conjugatedmicroporous polymers: design, synthesis and application. Chemical Society Reviews, 42,8012-8031, doi:10.1039/c3cs60160a (2013).
97 Seamlessmultimaterial 3D liquid-crystalline elastomer actuators for next-generationentirely soft robots. Science Advances, 6,doi:10.1126/sciadv.aay8606 (2020).
98 A magnetic solderfor assembling bulk covalent adaptable network blocks. Chemical Science, 11,7694-7700, doi:10.1039/d0sc01678k (2020).
99 Functional epoxyvitrimers and composites. Progress in Materials Science,doi:10.1016/j.pmatsci.2020.100710 (2020).
100 Liquid-CrystallineSoft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie-International Edition, 59, 4778-4784, doi:10.1002/anie.201915694 (2020).
101 Electricity-TriggeredSelf-Healing of Conductive and Thermostable Vitrimer Enabled by Paving AlignedCarbon Nanotubes.Acs Applied Materials & Interfaces, 12,14315-14322, doi:10.1021/acsami.9b21949 (2020).
102 Detecting topologyfreezing transition temperature of vitrimers by AIE luminogens. Nature Communications, 10, doi:10.1038/s41467-019-11144-6(2019).
103 ReprocessableThermoset Soft Actuators. Angewandte Chemie-International Edition, 58,17474-17479, doi:10.1002/anie.201911612 (2019).
104 Harnessing theDay-Night Rhythm of Humidity and Sunlight into Mechanical Work Using Recyclableand Reprogrammable Soft Actuators.Acs Applied Materials & Interfaces, 11,29290-29297, doi:10.1021/acsami.9b09324 (2019).
105 Durableliquid-crystalline vitrimer actuators. Chemical Science, 10,3025-3030, doi:10.1039/c8sc05358h (2019).
106 Solvent-assistedprogramming of flat polymer sheets into reconfigurable and self-healing 3Dstructures (vol 9, 2291, 2018). Nature Communications, 9,doi:10.1038/s41467-018-04835-z (2018).
107 Solvent-assistedprogramming of flat polymer sheets into reconfigurable and self-healing 3Dstructures. Nature Communications, 9, doi:10.1038/s41467-018-04257-x(2018).
108 UntetheredRecyclable Tubular Actuators with Versatile Locomotion for Soft ContinuumRobots. Advanced Materials, 30, doi:10.1002/adma.201801103 (2018).
109 A durable monolithicpolymer foam for efficient solar steam generation (vol 9, pg 623, 2018). Chemical Science, 9, 1392-1392, doi:10.1039/c8sc90011f (2018).
110 Atomic-levelmolybdenum oxide nanorings with full-spectrum absorption and photoresponsiveproperties. Nature Communications, 8, doi:10.1038/s41467-017-00850-8(2017).
111 Carbonnanotube-vitrimer composite for facile and efficient photo-welding of epoxy(vol 5, pg 3486, 2014). Chemical Science, 8,2464-2464, doi:10.1039/c6sc90083f (2017).
112 Enabling thesunlight driven response of thermally induced shape memory polymers byrewritable CH3NH3PbI3 perovskite coating.Journal of Materials Chemistry A, 5,7285-7290, doi:10.1039/c7ta01474k (2017).
113 Polydopaminenanoparticles doped in liquid crystal elastomers for producing dynamic 3Dstructures. Journal of Materials Chemistry A, 5,6740-6746, doi:10.1039/c7ta00458c (2017).
114 Multi-stimuliresponsive and multi-functional oligoaniline-modified vitrimers. Chemical Science, 8, 724-733, doi:10.1039/c6sc02855a (2017).
115 Making and RemakingDynamic 3D Structures by Shining Light on Flat Liquid Crystalline VitrimerFilms without a Mold. Journal of the American Chemical Society, 138,2118-2121, doi:10.1021/jacs.5b12531 (2016).
116 Regional ShapeControl of Strategically Assembled Multishape Memory Vitrimers. Advanced Materials, 28, 156-+, doi:10.1002/adma.201503789 (2016).
117 Effect of alkyllength dependent crystallinity for the mechanofluorochromic feature of alkylphenothiazinyl tetraphenylethenyl acrylonitrile derivatives. Journalof Materials Chemistry C, 4, 4786-4791, doi:10.1039/c6tc00939e(2016).
118 Polydopamine coatedshape memory polymer: enabling light triggered shape recovery, light controlledshape reprogramming and surface functionalization. Chemical Science, 7,4741-4747, doi:10.1039/c6sc00584e (2016).
119 A novel fluorescentamphiphilic glycopolymer based on a facile combination of isocyanate and glucosamine.Journalof Materials Chemistry C, 3, 1738-1744, doi:10.1039/c4tc02556c(2015).
120 BreathingDemulsification: A Three-Dimensional (3D) Free-Standing SuperhydrophilicSponge. Acs Applied Materials & Interfaces, 7,22264-22271, doi:10.1021/acsami.5b07530 (2015).
121 Self-polymerizationof dopamine and polyethyleneimine: novel fluorescent organic nanoprobes forbiological imaging applications.Journal of Materials Chemistry B, 3,3476-3482, doi:10.1039/c4tb02067g (2015).
122 Fine-tuning the mechanofluorochromicproperties of benzothiadiazole-cored cyano-substituted diphenylethenederivatives through D-A effect. Journal of Materials Chemistry C, 2,8932-8938, doi:10.1039/c4tc01457j (2014).
123 Carbonnanotube-vitrimer composite for facile and efficient photo-welding of epoxy. Chemical Science, 5, 3486-3492, doi:10.1039/c4sc00543k (2014).
124 Mouldableliquid-crystalline elastomer actuators with exchangeable covalent bonds. Nature Materials, 13, 36-41, doi:10.1038/nmat3812 (2014).
125 Promises andChallenges of the Practical Implementation of Prelithiation in Lithium‐IonBatteries. Advanced Energy Materials, doi:10.1002/aenm.202101565 (2021).
126 Localizingconcentrated electrolyte in pore geometry for highly reversible aqueous Znmetal batteries. Chemical Engineering Journal, 420,doi:10.1016/j.cej.2021.129642 (2021).
127 Addressing the LowSolubility of a Solid Electrolyte Interphase Stabilizer in an Electrolyte byComposite Battery Anode Design. Acs Applied Materials & Interfaces, 13,13354-13361, doi:10.1021/acsami.1c01571 (2021).
128 Enhancedprocessability and electrochemical cyclability of metallic sodium at elevatedtemperature using sodium alloy composite.Energy Storage Materials, 35,310-316, doi:10.1016/j.ensm.2020.11.015 (2021).
129 A Salt‐in‐MetalAnode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged BatteryCycling. Advanced Functional Materials, 31,doi:10.1002/adfm.202010602 (2021).
130 A ReplacementReaction Enabled Interdigitated Metal/Solid Electrolyte Architecture forBattery Cycling at 20 mA cm(-2) and 20 mAh cm(-2). Journal of the American ChemicalSociety, 143, 3143-3152, doi:10.1021/jacs.0c11753 (2021).
131 A novel batteryscheme: Coupling nanostructured phosphorus anodes with lithium sulfidecathodes. Nano Research, 13, 1383-1388,doi:10.1007/s12274-020-2645-8 (2020).
132 Mechanical rollingformation of interpenetrated lithium metal/lithium tin alloy foil forultrahigh-rate battery anode. Nature Communications, 11,829, doi:10.1038/s41467-020-14550-3 (2020).
133 ConformalPrelithiation Nanoshell on LiCoO2 Enabling High-Energy Lithium-Ion Batteries. Nano Letters, 20, 4558-4565, doi:10.1021/acs.nanolett.0c01413 (2020).
134 A Lithium MetalAnode Surviving Battery Cycling Above 200 degrees C. Advanced Materials, 32,e2000952, doi:10.1002/adma.202000952 (2020).
135 A paper-supportedinorganic composite separator for high-safety lithium-ion batteries. Journalof Membrane Science, 553, 10-16,doi:10.1016/j.memsci.2018.02.040 (2018).
136 A novel safetyanticipation estimation method for the aerial lithium-ion battery pack based onthe real-time detection and filtering.Journal of Cleaner Production, 185,187-197, doi:10.1016/j.jclepro.2018.01.236 (2018).
137 Revisiting theCorrosion of the Aluminum Current Collector in Lithium-Ion Batteries. Journalof Physical Chemistry Letters, 8, 1072-1077,doi:10.1021/acs.jpclett.6b02933 (2017).
138 Application ofGalvanostatic Intermittent Titration Technique to Investigate PhaseTransformation of LiFePO4 Nanoparticles.Electrochimica Acta, 241,132-140, doi:10.1016/j.electacta.2017.04.137 (2017).
139 Polyimide Binder: AFacile Way to Improve Safety of Lithium Ion Batteries. Electrochimica Acta, 187,113-118, doi:10.1016/j.electacta.2015.11.019 (2016).
140 Boron-dopedKetjenblack based high performances cathode for rechargeable Li-O-2 batteries. Journalof Energy Chemistry, 25, 131-135,doi:10.1016/j.jechem.2015.08.011 (2016).
141 Effect of Pore SizeDistribution of Carbon Matrix on the Performance of Phosphorus@Carbon Materialas Anode for Lithium-Ion Batteries. Acs Sustainable Chemistry & Engineering, 4,4217-4223, doi:10.1021/acssuschemeng.6b00712 (2016).
142 Characterization ofporous micro-/nanostructured Co3O4 microellipsoids. Electrochimica Acta, 188,40-47, doi:10.1016/j.electacta.2015.10.187 (2016).
143 Surface modificationof polyolefin separators for lithium ion batteries to reduce thermal shrinkagewithout thickness increase. Journal of Energy Chemistry, 24,138-144, doi:10.1016/s2095-4956(15)60294-7 (2015).
144 Nanocompositepolymer membrane derived from nano TiO2-PMMA and glass fiber nonwoven: highthermal endurance and cycle stability in lithium ion battery applications. Journalof Materials Chemistry A, 3, 17697-17703, doi:10.1039/c5ta02781k(2015).
145 In-situ Coating ofCathode by Electrolyte Additive for High-voltage Performance of Lithium-ionBatteries. Electrochimica Acta, 158, 202-208,doi:10.1016/j.electacta.2014.12.143 (2015).
146 Facile synthesis ofmonodisperse Co3O4 mesoporous microdisks as an anode material for lithium ionbatteries. Electrochimica Acta, 151, 109-117,doi:10.1016/j.electacta.2014.10.154 (2015).
147 Significant role of"burned" graphene in determining the morphology of LiNiO2 preparedunder the air conditions.Electrochimica Acta, 176,240-248, doi:10.1016/j.electacta.2015.07.035 (2015).
148 Composite ofgraphite/phosphorus as anode for lithium-ion batteries. Journal of Power Sources, 289,100-104, doi:10.1016/j.jpowsour.2015.04.168 (2015).
149 Solvothermal synthesisof nano LiMn0.9Fe0.1PO4: Reaction mechanism and electrochemical properties. Journalof Power Sources, 253, 143-149,doi:10.1016/j.jpowsour.2013.12.010 (2014).
150 Improvement inHigh-voltage Performance of Lithium-ion Batteries Using Bismaleimide as anElectrolyte Additive. Electrochimica Acta, 121,264-269, doi:10.1016/j.electacta.2013.12.170 (2014).
151 Hierarchical CarbonNanotube/Carbon Black Scaffolds as Short- and Long-Range Electron Pathways withSuperior Li-Ion Storage Performance. Acs Sustainable Chemistry & Engineering, 2,200-206, doi:10.1021/sc400239u (2014).
152 Influence of anionspecies on the morphology of solvothermal synthesized LiMn0.9Fe0.1PO4. ElectrochimicaActa, 134, 13-17, doi:10.1016/j.electacta.2014.04.081 (2014).
153 MorphologyRegulation of Nano LiMn0.9Fe0.1PO4 by Solvothermal Synthesis for lithium ionbatteries (vol 112, pg 144, 2013).Electrochimica Acta, 115,671-671, doi:10.1016/j.electacta.2013.12.002 (2014).
154 Nano particleLiFePO4 prepared by solvothermal process.Journal of Power Sources, 244,94-100, doi:10.1016/j.jpowsour.2013.03.101 (2013).
155 Graphene-coatedplastic film as current collector for lithium/sulfur batteries. Journalof Power Sources, 239, 623-627,doi:10.1016/j.jpowsour.2013.02.008 (2013).
156 Synthesis andcharacterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O-2 cathode material for Li-ionbatteries. Journal of Power Sources, 244, 652-657,doi:10.1016/j.jpowsour.2012.12.107 (2013).
157 Morphologyregulation of nano LiMn0.9Fe0.1PO4 by solvothermal synthesis for lithium ionbatteries. Electrochimica Acta, 112, 144-148,doi:10.1016/j.electacta.2013.08.166 (2013).
158 Dispersibility ofnano-TiO2 on performance of composite polymer electrolytes for Li-ionbatteries. Electrochimica Acta, 111, 674-679,doi:10.1016/j.electacta.2013.08.048 (2013).
159 In situ preparednano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced compositepolymer electrolyte for Li-ion batteries. Journal of Materials Chemistry A, 1,5955-5961, doi:10.1039/c3ta00086a (2013).
160 Crystal OrientationTuning of LiFePO4 Nanoplates for High Rate Lithium Battery Cathode Materials. NanoLetters, 12, 5632-5636, doi:10.1021/nl3027839 (2012).
161 Nano-StructuredPhosphorus Composite as High-Capacity Anode Materials for Lithium Batteries. Angewandte Chemie-International Edition, 51, 9034-9037,doi:10.1002/anie.201204591 (2012).
162 Interfacialcompatibility of gel polymer electrolyte and electrode on performance of Li-ionbattery. Electrochimica Acta, 114, 527-532, doi:10.1016/j.electacta.2013.10.052(2013).
163 Electrochemicalproperties of MnO2 nanorods as anode materials for lithium ion batteries. Electrochimica Acta, 142, 152-156, doi:10.1016/j.electacta.2014.07.089 (2014).
164 Charge/dischargecharacteristics of sulfur composite cathode materials in rechargeable lithiumbatteries. Electrochimica Acta, 52, 7372-7376,doi:10.1016/j.electacta.2007.06.016 (2007).
165 Synthesis of nanoSb-encapsulated pyrolytic polyacrylonitrile composite for anode material inlithium secondary batteries.Electrochimica Acta, 52,3651-3653, doi:10.1016/j.electacta.2006.10.029 (2007).
166 Ca(3)(PO(4))(2)coating of spherical Ni(OH)(2) cathode materials for Ni-MH batteries atelevated temperature. Electrochimica Acta, 51,4533-4536, doi:10.1016/j.electacta.2006.01.009 (2006).
167 In situ composite ofnano SiO2-P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochimica Acta, 51, 1069-1075, doi:10.1016/j.electacta.2005.05.048 (2005).
168 Electrodeposition ofSn-Cu alloy anodes for lithium batteries.Electrochimica Acta, 50,4140-4145, doi:10.1016/j.electacta.2005.01.041 (2005).
169 Chemical reductionof nano-scale Cu2Sb powders as anode materials for Li-ion batteries. Electrochimica Acta, 52, 1538-1541, doi:10.1016/j.electacta.2006.01.084 (2006).
170 Nanometer copper-tinalloy anode material for lithium-ion batteries. Electrochimica Acta, 52,2447-2452, doi:10.1016/j.electacta.2006.08.055 (2007).
171 Hard carbon/lithiumcomposite anode materials for Li-ion batteries. Electrochimica Acta, 52,4312-4316, doi:10.1016/j.electacta.2006.12.012 (2007).
172 Preparation ofpoly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries. Electrochimica Acta, 52, 688-693, doi:10.1016/j.electacta.2006.05.055 (2006).
173 Preparation of amicroporous polymer electrolyte based on poly(vinylchloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries. Electrochimica Acta, 52, 3199-3206, doi:10.1016/j.electacta.2006.09.068 (2007).
174 Preparation ofSn(2)Sb alloy encapsulated carbon microsphere anode materials for Li-ionbatteries by carbothermal reduction of the oxides. Electrochimica Acta, 52,1221-1225, doi:10.1016/j.electacta.2006.07.020 (2006).
175 Charge/dischargecharacteristics of sulfurized polyacrylonitrile composite with different sulfurcontent in carbonate based electrolyte for lithium batteries. Electrochimica Acta, 72, 114-119, doi:10.1016/j.electacta.2012.04.005 (2012).
176 Macromoleculeplasticized interpenetrating structure solid state polymer electrolyte forlithium ion batteries. Electrochimica Acta, 68,214-219, doi:10.1016/j.electacta.2012.02.067 (2012).
177 Kineticinvestigation of sulfurized polyacrylonitrile cathode material byelectrochemical impedance spectroscopy. Electrochimica Acta, 56,5252-5256, doi:10.1016/j.electacta.2011.03.009 (2011).
178 Advanced structuresin electrodepo sited tin base anodes for lithium ion batteries. Electrochimica Acta, 52, 7820-7826, doi:10.1016/j.electacta.2007.06.017 (2007).
179 Purification andcarbon-film-coating of natural graphite as anode materials for Li-ionbatteries. Electrochimica Acta, 52, 6006-6011,doi:10.1016/j.electacta.2007.03.050 (2007).
180 A Si-SnSb/pyrolyticPAN composite anode for lithium-ion batteries. Electrochimica Acta, 53,7048-7053, doi:10.1016/j.electacta.2008.05.040 (2008).
181 Granulation ofnano-scale Ni(OH)(2) cathode materials for high power Ni-MH batteries. Energy Conversion and Management, 47, 1879-1883,doi:10.1016/j.enconman.2005.10.004 (2006).
182 Reclaim/recycle ofPt/C catalysts for PEMFC. Energy Conversion and Management, 48,450-453, doi:10.1016/j.enconman.2006.06.020 (2007).
183 In situ preparationof CuCl cubic particles on the commercial copper foil: its significantfacilitation to the electrochemical performance of the commercial graphite andits unexpected photochromic behavior. Journal of Alloys and Compounds, 835,doi:10.1016/j.jallcom.2020.155302 (2020).
184 A one-pot approachtowards FeF2-carbon core-shell composite and its application in lithium ionbatteries. Journal of Alloys and Compounds, 606,226-230, doi:10.1016/j.jallcom.2014.04.036 (2014).
185 Molar conductivitycalculation of Li-ion battery electrolyte based on mode coupling theory. Journalof Chemical Physics, 123, 3, doi:10.1063/1.2149849 (2005).
186 Oxygen evolutionimprovement of Ni(OH)(2) by Ca-3(PO4)(2) coating at elevated temperature. Journalof Electroanalytical Chemistry, 597, 127-129, doi:10.1016/j.jelechem.2006.09.015(2006).
187 Molecular dynamicssimulations of La2O3 thin films on SiO2.Journal of Energy Chemistry, 23,282-286, doi:10.1016/s2095-4956(14)60148-0 (2014).
188 Effect of silicananoparticles/poly(vinylidene fluoride-hexafluoropropylene) coated layers onthe performance of polypropylene separator for lithium-ion batteries. Journalof Energy Chemistry, 23, 582-586,doi:10.1016/s2095-4956(14)60188-1 (2014).
189 Solid statesynthesis of LiFePO4 studied by in situ high energy X-ray diffraction. Journalof Materials Chemistry, 21, 5604-5609, doi:10.1039/c0jm04049e(2011).
190 Analysis of thesynthesis process of sulphur-poly(acrylonitrile)-based cathode materials forlithium batteries. Journal of Materials Chemistry, 22, 22077-22081,doi:10.1039/c2jm30632h (2012).
191 Preparation ofPVDF-HFP microporous membrane for Li-ion batteries by phase inversion. Journalof Membrane Science, 272, 11-14,doi:10.1016/j.memsci.2005.12.038 (2006).
192 Preparation ofP(AN-MMA) microporous membrane for Li-ion batteries by phase inversion. Journalof Membrane Science, 280, 6-9,doi:10.1016/j.memsci.2006.05.028 (2006).
193 Preparation ofmicro-porous membrane electrodes and their application in preparing anodes ofrechargeable lithium batteries.Journal of Membrane Science, 310,1-6, doi:10.1016/j.memsci.2007.11.044 (2008).
194 Ionic limiting molarconductivity calculation of Li-ion battery electrolyte based on mode couplingtheory. Journal of Physical Chemistry B, 109,23141-23144, doi:10.1021/jp055233x (2005).
195 Structure andelectrochemical properties of composite polymer electrolyte based on polyvinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) forlithium-ion batteries. Journal of Power Sources, 246,499-504, doi:10.1016/j.jpowsour.2013.07.107 (2014).
196 Thermal runawayfeatures of large format prismatic lithium ion battery using extended volumeaccelerating rate calorimetry. Journal of Power Sources, 255,294-301, doi:10.1016/j.jpowsour.2014.01.005 (2014).
197 Using probabilitydensity function to evaluate the state of health of lithium-ion batteries. Journalof Power Sources, 232, 209-218,doi:10.1016/j.jpowsour.2013.01.018 (2013).
198 Characterization oflarge format lithium ion battery exposed to extremely high temperature. Journalof Power Sources, 272, 457-467,doi:10.1016/j.jpowsour.2014.08.094 (2014).
199 Characterization ofpenetration induced thermal runaway propagation process within a large formatlithium ion battery module.Journal of Power Sources, 275,261-273, doi:10.1016/j.jpowsour.2014.11.017 (2015).
200 Preparation ofco-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. Journalof Power Sources, 150, 216-222, doi:10.1016/j.jpowsour.2005.02.029(2005).
201 Controlledcrystallization and granulation of nano-scale beta-Ni(OH)(2) cathode materialsfor high power Ni-MH batteries. Journal of Power Sources, 152,285-290, doi:10.1016/j.jpowsour.2005.03.208 (2005).
202 Expansion andshrinkage of the sulfur composite electrode in rechargeable lithium batteries. Journalof Power Sources, 190, 154-156,doi:10.1016/j.jpowsour.2008.07.034 (2009).
203 Ytterbium coating ofspherical Ni(OH)(2) cathode materials for Ni-MH batteries at elevated temperature. Journalof Power Sources, 158, 1480-1483,doi:10.1016/j.jpowsour.2005.10.063 (2006).
204 Well-orderedspherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from coboltconcentration-gradient precursors. Journal of Power Sources, 202,284-290, doi:10.1016/j.jpowsour.2011.10.143 (2012).
205 Stannum doping oflayered LiNi3/8Co2/8Mn3/8O2 cathode materials with high rate capability forLi-ion batteries. Journal of Power Sources, 158, 524-528,doi:10.1016/j.jpowsour.2005.08.026 (2006).
206 Synthesis andcharacterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O-2 cathode material for Li-ionbatteries. Journal of Power Sources, 244, 652-657,doi:10.1016/j.jpowsour.2012.12.107 (2013).
207 Synthesis andcharacterization of LiNi0.6Mn0.4-xCoxO2 as cathode materials for Li-ionbatteries. Journal of Power Sources, 189, 28-33,doi:10.1016/j.jpowsour.2008.12.046 (2009).
208 Electrochemicalperformance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ionbatteries. Journal of Power Sources, 190, 149-153, doi:10.1016/j.jpowsour.2008.08.011(2009).
209 Internal shortcircuit detection for battery pack using equivalent parameter and consistencymethod. Journal of Power Sources, 294, 272-283,doi:10.1016/j.jpowsour.2015.06.087 (2015).
210 Anelectrochemical-thermal coupled overcharge-to-thermal-runaway model for lithiumion battery. Journal of Power Sources, 364, 328-340,doi:10.1016/j.jpowsour.2017.08.035 (2017).
211 Electrochemicalcharacteristics of sulfur composite cathode materials in rechargeable lithium batteries. Journalof Power Sources, 138, 271-273,doi:10.1016/j.jpowsour.2004.06.032 (2004).
212 The effect of localcurrent density on electrode design for lithium-ion batteries. Journalof Power Sources, 207, 127-133, doi:10.1016/j.jpowsour.2011.12.063(2012).
213 Electro-thermalmodeling and experimental validation for lithium ion battery. Journalof Power Sources, 199, 227-238,doi:10.1016/j.jpowsour.2011.10.027 (2012).
214 Preparation andcharacterization of high-density spherical Li0.97Cr0.01FePO4/C cathode materialfor lithium ion batteries. Journal of Power Sources, 158,543-549, doi:10.1016/j.jpowsour.2005.08.045 (2006).
215 A new process ofpreparing composite microstructure anode for lithium ion batteries. Journalof Power Sources, 184, 532-537,doi:10.1016/j.jpowsour.2008.02.064 (2008).
216 Synthesis andcharacterization of Sn-doped LiMn(2)O(4) cathode materials for rechargeableLi-ion batteries. Journal of the Electrochemical Society, 155,A760-A763, doi:10.1149/1.2965635 (2008).
217 Co/Yb hydroxidecoating of spherical Ni(OH)(2) cathode materials for Ni-MH batteries atelevated temperatures. Journal of the Electrochemical Society, 153,A566-A569, doi:10.1149/1.2161581 (2006).
218 Preparation ofCu6Sn5-encapsulated carbon microsphere anode materials for Li-ion batteries bycarbothermal reduction of oxides.Journal of the Electrochemical Society, 153,A1859-A1862, doi:10.1149/1.2229276 (2006).
219 In SituPolymerization of Methoxy Polyethylene Glycol (350) Monoacrylate andPolyethyleneglycol (200) Dimethacrylate Based Solid-State Polymer Electrolytefor Li-Ion Batteries. Journal of the Electrochemical Society, 159,A915-A919, doi:10.1149/2.003207jes (2012).
220 Internal ShortCircuit Trigger Method for Lithium-Ion Battery Based on Shape Memory Alloy. Journalof the Electrochemical Society, 164, A3038-A3044,doi:10.1149/2.0731713jes (2017).
221 Fusing Phenomenon ofLithium-Ion Battery Internal Short Circuit. Journal of the ElectrochemicalSociety, 164, A2738-A2745, doi:10.1149/2.1721712jes (2017).
222 Determination oflithium-ion transference numbers in LiPF6-PC solutions based on electrochemicalpolarization and NMR measurements. Journal of the Electrochemical Society, 155,A292-A296, doi:10.1149/1.2837832 (2008).
www.hexmgroup.com
Science:endless frontier
更多信息请扫描关注何向明公众号: