60210
当前位置: 首页   >  课题组新闻   >  课题组在纳米锰氧化物催化氧化甲苯的研究中取得进展
课题组在纳米锰氧化物催化氧化甲苯的研究中取得进展
发布时间:2024-05-30

课题组通过沉淀法制备了一系列不同价电子结构的MnxOyMn3O4MnO2Mn2O3)催化剂并用于空气中甲苯催化氧化去除研究。在甲苯催化氧化反应中,MnO2催化剂的本征活性(RS1.14×10-9 mol·m-2·s-1)优于Mn3O40.54×10-9 mol·m-2·s-1)和Mn2O30.45×10-9 mol·m-2·s-1)催化剂。实验表征和DFT计算结果表明,MnxOy催化剂Mnd带中心可能是其催化本征活性的决定性因素。与Mn3O4-1.25 eV)和Mn2O3-1.59 eV)相比,MnO2-1.03 eV)具有更高的催化氧化活性,可归因于其更高的d带中心。较高的d带中心可以减弱表面Mn-O键的强度(k = 290.9 N/m),同时也能增强表面对气态O2的吸附,从而增强表面晶格氧的迁移能力和吸附氧物种的量。本研究揭示了Mn基氧化物催化剂催化氧化活性与d电子结构的内在关系,可为催化氧化高性能催化剂的设计提供新的见解。

 

Jia Zeng (曾嘉), Sijia Song, Shuang Chen, Guizhi Zhang, Hongmei Xie, Guilin Zhou*. Comparative study of Mn oxide catalysts on toluene oxidation: The effect of Mn valence electronic structures [J]. Journal of Environmental Chemical Engineering, 2024, 12, 112780. https://doi.org/10.1016/j.jece.2024.112780

 

Understanding the structure-activity relationship of Mn-based oxide catalysts is of great importance for the rational development of highly performance catalysts for VOCs catalytic oxidation. However, the knowledge of the electronic structure-catalytic oxidation activity relationship over Mn-based oxide catalysts is still limited. Herein, we investigated the typical MnxOy (Mn3O4, MnO2, and Mn2O3) with different valence electronic structures by using various characterizations and DFT calculations. The MnO2 exhibits superior intrinsic activities (RS, 1.14×10-9 mol·m-2·s-1) when compared with Mn3O4 (0.54×10-9 mol·m-2·s-1) and Mn2O3 (0.45×10-9 mol·m-2·s-1) for toluene catalytic oxidation. The solid experimental and DFT calculation results show that the d-band center of Mn determines the intrinsic activity. The superior catalytic oxidation activity of MnO2 can be attributed to its higher d-band center (-1.03 eV) in comparison with that of Mn3O4 (-1.25 eV) and Mn2O3 (-1.59 eV). The higher d-band center can weaken the surface Mn-O bonds strength (k = 290.9 N/m) and strengthen the gaseous O2 adsorption simultaneously, then enhancing the mobility of surface lattice oxygen and the amount of adsorbed oxygen species. This work firstly reveals the intrinsic relationship between catalytic oxidation activity and d electronic structure over Mn-based oxide catalysts and provides knowledge that will advance the design of high-performance catalysts for catalytic oxidation.