自由基分子缓冲网络减少FAPbI3钙钛矿太阳能电池的光电压损失
Radical Molecular Network-Buffer Minimizes Photovoltage Loss in FAPbI3 Perovskite Solar Cells. Adv. Mater. 2025, 2417289.
FAPbI3钙钛矿太阳能电池在高效光伏方面具有巨大潜力。然而大尺寸甲脒离子(FA+)导致的晶格畸变问题长期未解决。尤其{111}c晶面生长过程中易形成平行于基底的晶内平面缺陷。这些缺陷不仅阻碍电荷垂直传输,还会引发非辐射复合,导致器件的开路电压(VOC)和填充因子(FF)显著降低。鉴于此。2025年2月24日,南京工业大学王芳芳教授和武汉理工大学李蔚教授于Adv. Mater.刊发使用具有可原位聚合的自由基分子ATEMPO作为添加剂来解决这些问题。ATEMPO 优先与 {111}c 钙钛矿面相互作用,引导它们的生长并在聚合时形成“自由基分子网络缓冲区”。该网络有效地减轻了晶格应变,抑制了缺陷的形成,通过氧化还原增强了电荷传输,并提供了疏水屏障,显著提高了器件的防潮性。这种策略产生了高质量、面向 {111}c 的 FAPbI3 薄膜,从而产生了 25.28% 的冠军 PCE,VOC 高达 1.203 V,能量损失仅有 0.297 eV ,这是已报道的 FAPbI3 钙钛矿最高 VOC 之一。此外,有效面积为 12.5 cm2 的微型模块实现了 21.39% 的 PCE。这项工作为开发高性能、稳定的 钙钛矿太阳能电池 铺平了道路,并且光电压损失最小。此外,它还提供了一种很有前景的策略来延长设备寿命和解决环境问题。
Formamidinium lead iodide (FAPbI3) perovskite solar cells (PSCs) hold immense potential for high-efficiency photovoltaics, but maximizing their open-circuit voltage (VOC) remains challenging. Targeting the inherently stable {111}c-dominant facets is a promising approach for enhancing stability, but their formation typically suffers from high defect densities and disordered growth. This study introduces a novel approach using an in situ polymerizable radical molecule, ATEMPO, as an additive to address these issues. ATEMPO preferentially interacts with the {111}c perovskite facets, guiding their growth and forming a “radical molecular network-buffer” upon polymerization. The network effectively mitigates lattice strain, suppresses defect formation, enhances charge transport via redox-mediated hopping, and provides a hydrophobic barrier, significantly improving moisture resistance. This strategy yields high-quality, {111}c-oriented FAPbI3 films, leading to a champion PCE of 25.28% with a remarkably high VOC of 1.203 V, corresponding to an energy loss (Eloss) of only 0.297 eV, among the highest VOC reported for FAPbI3-based PSCs. Furthermore, a mini-module fabricate with an active area of 12.5 cm2 achieve a high PCE of 21.39%. the work paves the way for developing high-performance, stable PSCs with minimized photovoltage loss. Furthermore, it offers a promising strategy to enhance device longevity and address environmental concerns.
原文:
https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202417289