我们编写了THERMO程序可以用来计算液相中平动熵的计算,分子和空穴的的体积分别用IDSCRF和Bader半径来计算,从而计算出分子在XYZ三个方向上的平移距离,从而算出平移体积。
具体的算法方面的工作已经发表:
S.-C. Liu, X.-R. Zhu, D.-Y. Liu, D.-C. Fang*, DFT calculations on the solutional systems--solvation energy, dispersion energy and entropy, Phys. Chem. Chem. Phys., 25, 913-931(2023). DOI:10.1039/D2CP04720A
上图中的分子体积计算是基于我们得到的Bader半径,可参见:
W.H. Mu, Chasse G.A., D.-C. Fang*, Test and modification of the Van der Waal's radii employed in the default PCM model,Int. J. Quantum Chem., 108,1422(2008). DOI:10.1002/qua.21674
而计算空穴体积是采用我们的IDSCRF半径,可参见下列文献以及下表:
J.Y. Tao, W.H. Mu, G.A.Chass,T.H. Tang,D.-C. Fang*,Balancing the atomic waistline: IDSCRF radii for main-group elements and transition metals, Int. J. Quantum Chem., 113,975(2013). DOI:10.1002/qua.24065
通过一系列反应的测试而确立的这种算法的有效性, 主要研究的反应体系有:
(1) Y. Li and D.-C. Fang, DFT calculations on kinetic data for some [4+2] reactions in solution, Phys. Chem. Chem. Phys., 2014, 16, 152234–115230 DOI: 10.1039/C4CP02068E
(2) Y. Li and D.-C. Fang, Density Functional Theory Studies on the t-Butoxyl Radical Mediated Hydrogen Atom Transfer Reactions,Chem. J. Chin. Univ., 2015, 36, 1954–1960. DOI: 10.7503/cjcu20150326
(3) L. Zhao, S.-J. Li and D.-C. Fang, A Theoretical Study of Ene Reactions in Solution: A Solution-Phase Translational Entropy Model, ChemPhysChem, 2015, 16, 3711–3718. DOI:10.1002/cphc.201500662
(4) L.-L. Han, S.-J. Li and D.-C. Fang, Theoretical estimation of kinetic parameters for nucleophilic substitution reactions in solution: an application of a solution translational entropy model, Phys. Chem. Chem. Phys., 2016, 18, 6182– 6190. DOI: 10.1039/C5CP07803B
(5) S.-J. Li and D.-C. Fang, A DFT kinetic study on 1,3- dipolar cycloaddition reactions in solution, Phys. Chem. Chem. Phys., 2016, 18, 30815–30823. DOI: 10.1039/C6CP05190A
我们也应用到催化反应体系与考虑溶液中色散的问题一起来提高计算的精度,如
(1)S.-J. Li, W. Fang, J. O. Richardson, D.-C. Fang*, Tunnelling assisted hydrogen elimination mechanisms of FeCl3/TEMPO, Chem. Comm., 58, 565(2022). DoI: 10.1039/D1CC06035J
(2)H.-J. Long, L. Zhang, B. Lian, D.-C. Fang*, DFT study on the ruthenium-catalyzed decarbonylative annulation of an alkyne with a
six-membered hydroxychromone via C–H/C–C activation, Org. Chem. Front., 9, 1056(2022). DOI: 10.1039/d1qo01786a
(3) Z.-H. Wu, D.-C. Fang*, DFT study on ruthenium-catalyzed N-methylbenzamide-directed 1,4-addition of the ortho C–H bond to maleimide via C–H/C–C activation, Org. Chem. Front., 9,6808-6816(2022). 10.1039/D2QO01487D
(4)X.-R. Zhu, D.-C. Fang*, DFT DFT study on stereoselective Rh-catalyzed intramolecular [2 + 2 + 2] cycloaddition of allene–ene–ynes, Org. Chem. Front.,10,2624(2023). DOI: 10.1039/d3qo00363a
(5)S.-C. Liu, D.-C. Fang*, DFT Studies on Mechanisms of Carboamination/Diamination of Unactivated Alkenes Mediated by Pd(IV) Intermediates, J. Org. Chem. , 88, 14540(2023). DOI: 10.1021/acs.joc.3c01561
(6)X.-R. Zhu, D.-C. Fang*, DFT studies on the reaction mechanism of Ru(II)-catalyzed the C−H activation of aromatic amide and alkylation of non-active olefins, Comput. Theoret. Chem., 1229,114339(2023). DOI: 10.1016/j.comptc.2023.114339
(7). L.-F. Yao, L. Zhang, D.-C. Fang*, Theoretical exploration of Rh/Cu cooperative catalysis in C−H allylation of benzamide with 1,3-diene, Organometallics, 43, 495(2024). DOI: 10.1039/d1qo01786a
(8) D.-Y. Liu, D.-C. Fang*, Theoretical Study on the Mechanism of Ru(II)-Catalyzed Intermolecular [3 + 2] Annulation between o-Toluic Acid and 3,5-Bis(trifluoromethyl)benzaldehyde: Octahedral vs. Trigonal Bipyramida, J. Org. Chem., accepted.
We have coded THERMO program to calculating the translational entropy in solution, in which the volumes of molecule and cavity could be calculated with IDSCRF and Bader radii, respectively.
The detaled algorithim will be published in:
S.-C. Liu, X.-R. Zhu, D.-Y. Liu, D.-C. Fang*, DFT calculations on the solutional systems--solvation energy, dispersion energy and entropy, Phys. Chem. Chem. Phys., 25, 913-931(2023). DOI:10.1039/D2CP04720A
We have tested a series reactions with experimental vaules in the following:
(1) Y. Li and D.-C. Fang, DFT calculations on kinetic data for some [4+2] reactions in solution, Phys. Chem. Chem. Phys., 2014, 16, 152234–115230 DOI: 10.1039/C4CP02068E
(2) Y. Li and D.-C. Fang, Density Functional Theory Studies on the t-Butoxyl Radical Mediated Hydrogen Atom Transfer Reactions,Chem. J. Chin. Univ., 2015, 36, 1954–1960. DOI: 10.7503/cjcu20150326
(3) L. Zhao, S.-J. Li and D.-C. Fang, A Theoretical Study of Ene Reactions in Solution: A Solution-Phase Translational Entropy Model, ChemPhysChem, 2015, 16, 3711–3718. DOI:10.1002/cphc.201500662
(4) L.-L. Han, S.-J. Li and D.-C. Fang, Theoretical estimation of kinetic parameters for nucleophilic substitution reactions in solution: an application of a solution translational entropy model, Phys. Chem. Chem. Phys., 2016, 18, 6182– 6190. DOI: 10.1039/C5CP07803B
(5) S.-J. Li and D.-C. Fang, A DFT kinetic study on 1,3- dipolar cycloaddition reactions in solution, Phys. Chem. Chem. Phys., 2016, 18, 30815–30823. DOI: 10.1039/C6CP05190A
The application to catalytic system, along with the dispersion correction in solution:
(1)S.-J. Li, W. Fang, J. O. Richardson, D.-C. Fang*, Tunnelling assisted hydrogen elimination mechanisms of FeCl3/TEMPO, Chem. Comm., 58, 565(2022). DoI: 10.1039/D1CC06035J
(2)H.-J. Long, L. Zhang, B. Lian, D.-C. Fang*, DFT study on the ruthenium-catalyzed decarbonylative annulation of an alkyne with a
six-membered hydroxychromone via C–H/C–C activation, Org. Chem. Front., 9, 1056(2022). DOI: 10.1039/d1qo01786a
(3) Z.-H. Wu, D.-C. Fang*, DFT study on ruthenium-catalyzed N-methylbenzamide-directed 1,4-addition of the ortho C–H bond to maleimide via C–H/C–C activation, Org. Chem. Front., 9,6808-6816(2022). 10.1039/D2QO01487D
(4)X.-R. Zhu, D.-C. Fang*, DFT DFT study on stereoselective Rh-catalyzed intramolecular [2 + 2 + 2] cycloaddition of allene–ene–ynes, Org. Chem. Front.,10,2624(2023). DOI: 10.1039/d3qo00363a
(5)S.-C. Liu, D.-C. Fang*, DFT Studies on Mechanisms of Carboamination/Diamination of Unactivated Alkenes Mediated by Pd(IV) Intermediates, J. Org. Chem. , 88, 14540(2023). DOI: 10.1021/acs.joc.3c01561
(6)X.-R. Zhu, D.-C. Fang*, DFT studies on the reaction mechanism of Ru(II)-catalyzed the C−H activation of aromatic amide and alkylation of non-active olefins, Comput. Theoret. Chem., 1229,114339(2023). DOI: 10.1016/j.comptc.2023.114339
(7). L.-F. Yao, L. Zhang, D.-C. Fang*, Theoretical exploration of Rh/Cu cooperative catalysis in C−H allylation of benzamide with 1,3-diene, Organometallics, 43, 495(2024). DOI: 10.1039/d1qo01786a
(8) D.-Y. Liu, D.-C. Fang*, Theoretical Study on the Mechanism of Ru(II)-Catalyzed Intermolecular [3 + 2] Annulation between o-Toluic Acid and 3,5-Bis(trifluoromethyl)benzaldehyde: Octahedral vs. Trigonal Bipyramida, J. Org. Chem., in press. DOI: 10.1021/acs.joc.4c01461