15578
当前位置: 首页   >  组员介绍   >  李昊
李昊 博士研究生,日本JSPS DC-2特别研究员     进组时间: 2016    离组时间: 2019

李昊,现为日本京都大学博士后期课程三回生,日本学术振兴会特别研究员-DC2. [Homepage]

2016年获得英国利物浦约翰摩尔斯大学(Liverpool John Moores University)机械工程一等荣誉学位和上海理工大学机械设计双学士学位。后获得推免研究生资格,升入上海理工大学机械工程学院随丁晓红教授攻读硕士学位(2016-2019), 主要研究方向为:高热流密度散热元件结构拓扑优化设计,期间于2017年获得第18届International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT)优秀会议论文奖,于2018年获德国学术交流中心DAAD (Deutscher Akademischer Austauschdienst)全额资助赴德国帕德博恩大学(Universität Paderborn)见习研究,于2019年获上海理工大学优秀硕士论文奖。而后赴日本京都大学机械理工专攻随西脇眞二教授攻读工学博士学位(2019至今),主要研究方向为: 多物理场数学建模及拓扑优化方法研究。目前他正与法国科学研究中心(CNRS)的科学家Pierre Jolivet联合开发大规模结构拓扑优化并行计算框架,与比利时鲁汶大学(KU Leuven)的博士研究生Mojtaba Barzegari联合研究生物可降解数学建模。其在研课题 “熱流体システムを対象とした大規模マルチフィジックストポロジー最適化” 获得日本学术振兴会JSPS基金资助(No. JP21J13418)。他将于2022年中进行博士学位论文答辩,而后在日本京都大学以JSPS博士后特别研究员身份继续从事相关研究,他正与中国工程物理研究院研究员于明豪博士联合开发内填充结构优化等计算框架。

(2022.03)


Level set based topology optimization of the multi-physics system using high-performance computing (PhD project)

We propose a novel framework for the two- and three-dimensional topology optimization (TO) of a thermal fluid-structure system. The proposed design methodology uses a reaction-diffusion equation (RDE) for updating the level-set function based on the topological sensitivity. From the numerical point of view, two key ingredients are highlighted: (i) two different types of dynamic sparse grids (adaptive mesh) are used. More accurately speaking, body-fitted mesh allows the disjoint-reunion of a global mesh whose interfaces can be described by an implicitly defined surface (zero level-set). Anisotropic mesh adaptation is highly scalable with respect to the problem size, therefore can accelerate the overall computational; (ii) our framework uses FreeFEM for finite element analysis (FEA) and PETSc for distributed linear algebra. Efficient preconditioner techniques are utilized to solve the large-scale finite element systems. From an engineering standpoint, we construct a complete product development workflow including the pre-processing, TO, B-Rep conversion, and the numerical experiment. The performance of our methodology is demonstrated by solving a variety of optimization problems: mean compliance, minimal power dissipation, dry-/wet-fluid-structure interaction (FSI), natural convection, lift--drag, microfluidic mixing, and fluid-to-fluid heat exchange. For comparison and for assessing our various techniques, we benchmark our designs against state-of-the-art works.


Experimental and numerical investigation of high heat flux heat sink designed by topology optimization (Master project)

We experimentally and numerically investigated the relationship between the liquid-cooled channel layout designed by topology optimization and the flow and thermal performances, from the engineering point of view. Our research can be applied to the thermal management of microprocessors, electric vehicle batteries, LED displays, etc.

 

Links

ResearchGate   Google Scholar


Contact Info & Address

Manufacturing Systems Engineering Laboratory, b2S09, C3 Bldg., Katsura Campus, Kyoto University.

Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura C3, Nishikyo-ku, Kyoto 615-8540 

E-mail: li.hao.48z@st.kyoto-u.ac.jp