22426
当前位置: 首页   >  课题组新闻   >  【学术论文】恭喜课题组2021级硕士研究生杨琦同学论文被Journal of the Energy Institute期刊录用发表!
【学术论文】恭喜课题组2021级硕士研究生杨琦同学论文被Journal of the Energy Institute期刊录用发表!
发布时间:2024-03-17


20243月常州大学低碳清洁能源与安全高效燃烧科研团队孙运兰教授课题组2021级硕士研究生杨琦在Journal of the Energy Institute期刊发表了题为“N2 selectivity of Fe–Mn nano-sized catalysts in selective catalytic reduction of ammonia”的研究论文。

Fe-Mn纳米催化剂在低温条件下具有优异的脱硝活性,但在Fe元素加入前后,N2选择性差异较大,其原因尚且未知。本文采用水热法制备了Fe-Mn纳米催化剂,对其脱硝性能和理化特性进行了研究。基于实验研究结果基础上,构建了引入Fe元素前后的Fe-Mn纳米催化剂的简化计算模型,即α-MnO2 (200)表面和Fe-Mn团簇模型。运用密度泛函理论方法深入探究了Fe-Mn纳米催化剂在NH3-SCR过程中N2的生成机理。α-MnO2 (200)表面的MnFe-Mn团簇的FeMn对催化剂脱硝活性发挥了重要作用。NH3在这些位点能够形成稳定的化学吸附,尤其是Fe-Mn团簇的Mn位点其吸附能力更强。此外,Fe-Mn团簇的Mn位点比α-MnO2 (200)表面的Mn位点更有利于NH3脱氢反应,且关键中间体NH2NO更偏向于在Fe-Mn团簇的Mn位点上形成。在α-MnO2 (200)表面的Mn位点和Fe-Mn团簇的Fe位点上,NH2NO中间体很容易继续脱氢生成N2,但在Fe-Mn团簇的Mn位点,NH2NO中间体更倾向于内部迁移分解生成N2,且比在α-MnO2 (200)表面的Mn位点和Fe-Mn团簇的Fe位点更容易促进NH2NO中间体分解形成N2。这些结果将有助于深入了解Fe-Mn纳米催化剂在N2生成方面的微观机制,为提高铁锰催化剂N2选择性奠定基础

因此,本文采用水热法成功制备了Fe-Mn纳米催化剂,并对其进行了脱硝活性测试,以评估其脱硝性能。采用密度泛函理论方法,系统研究了在NH3-SCR反应中,α-MnO2 (200)表面和Fe-Mn团簇对主要反应气体NH3的吸附性能。同时,我们着眼于探究这些催化剂表面在促进N2生成方面的能力大小,以研究它们的N2选择性特性。主要结论如下

(1) FeMn-0.5-180°C催化剂的NOx转化率始终保持在94%以上,在160-180°C时更是显著超过99%。此外,它还表现出良好的N2选择性、N2O选择性和NH3转化率。与FeMn-0.5-180°C催化剂相比,FeMn-0-180°C催化剂的NOx转化率、N2选择性、N2O选择性和NH3转化能力均显著降低。

(2) NH3分子倾向于在α-MnO2200)表面的Mn位点和Fe-Mn团簇的FeMn位点上形成稳定的化学吸附产物。在NH3吸附过程中,发生电子转移,向α-MnO2200)表面和Fe-Mn团簇移动。NH3Fe-Mn团簇上的吸附倾向更高。与α-MnO2200)表面的Mn位点相比,NH3更倾向于吸附在Fe-Mn簇的Mn位点上,吸附能为1.639 eV

(3) α-MnO2200)表面和Fe-Mn团簇上,NH3脱氢过程更容易发生,特别是在Fe-Mn簇的Mn位点上,NH3脱氢所需最低能垒仅为0.688 eV,远低于α-MnO2200)表面上的能垒。NH3脱氢导致在催化剂表面上产生大量吸附的NH2,这有利于后续的脱硝反应。

(4) α-MnO2 (200)表面相比,Fe-Mn团簇Mn位点更有助于NO与吸附的NH2物种结合形成关键的NH2NO中间体。在α-MnO2 (200)表面Mn位点和Fe-Mn团簇Fe位点上,NH2NO中间体更容易进行脱氢反应,生成N2。然而,在Fe-Mn团簇Mn位点,NH2NO中间体更倾向于内部迁移并分解生成N2。此外,Fe-Mn团簇在促进NH2NO中间体分解形成N2方面的效果优于α-MnO2 (200)表面。此外,α-MnO2 (200)表面和Fe-Mn团簇Mn位点处的NHNOH基团易于进行-OH脱离,并且内部迁移到H端,从而形成N2H2O。而在Fe-Mn团簇Fe位点处,NHNOH基团更容易进行H原子脱离,并且内部迁移到O端,形成N2H2O

 

该论文第一作者杨琦是常州大学2021级动力工程及工程热物理学术硕士研究生,常州大学孙运兰教授和朱宝忠教授为通讯作者,常州大学是第一作者和通讯作者单位。该研究成果得到了国家自然科学基金面上项目资助!


英文摘要:

Fe-Mn nano-sized catalysts show remarkable deNOx activities at low temperatures. However, there is a noticeable disparity in N2 selectivity before and after the addition of Fe element, and the cause of this difference remains unknown. In this study, Fe-Mn nano-sized catalysts were prepared by using the hydrothermal method and their deNOx performance and physicochemical properties were examined. Based on the results of experimental research, the simplified computational models for Fe-Mn nano-sized catalysts before and after introducing Fe element were constructed, namely α-MnO2 (200) surface and Fe-Mn cluster model. The mechanism of N2 generation during the NH3-SCR process of Fe-Mn nano-sized catalysts was thoroughly investigated by using the density functional theory. The Mn sites of Fe-Mn clusters are more favorable for NH3 dehydrogenation reaction compared to the Mn sites on the α-MnO2 (200) surface. Furthermore, compared to the α-MnO2 (200) surface, the NH2NO intermediate tends to undergo dehydrogenation on the Fe-Mn clusters to generate N2. These results will help to gain insight into the microscopic mechanism of Fe-Mn nano-sized catalysts in N2 generation during NH3-SCR and lay the foundation for enhancing the N2 selectivity of Fe-Mn catalysts.

 

图解摘要:


原文链接:https://doi.org/10.1016/j.joei.2024.101565



撰稿:2021级硕士研究生杨琦    审核:朱宝忠