23226
当前位置: 首页   >  课题组新闻   >  【学术论文】恭喜课题组2021级硕士研究生罗光权同学论文被Ceramics International期刊录用发表!
【学术论文】恭喜课题组2021级硕士研究生罗光权同学论文被Ceramics International期刊录用发表!
发布时间:2024-02-17


      20242月常州大学低碳清洁能源与安全高效燃烧科研团队孙运兰教授课题组2021级硕士研究生罗光权在Ceramics International期刊发表了题为Enhancement of CO2 adsorption performance and widening of adsorption temperature window by co-doping different valence state metals on the Li4SiO4 (010) surface的研究论文。

Li4SiO4因其较高的CO2理论吸附量和良好的稳定性能在CO2捕集领域有着很好的应用前景。本文通过密度泛函理论(DFT)和实验手段相结合的方式,深入研究了Li4SiO4吸附剂和掺杂金属元素(KNaBeCaAl)的Li4SiO4吸附剂的CO2吸附机理,并通过热重测试掺杂后吸附剂的吸附量和循环性能。最终得到,Li4SiO4010)表面O原子中的p轨道占O占据轨道的主导地位,使表面的O原子更有可能成为化学吸附反应的电子给体。不同价态的金属掺杂降低了CO2吸附在Li4SiO4010)表面的能量,尤其碱金属KNa使CO2更容易吸附到Li4SiO4010)表面,在其表面形成碳酸盐使得CO2流向碳酸盐熔体层的速度比流向固体产物层的速度快,提高了Li4SiO4010)表面的吸附性能。然而,并非所有的掺杂都具有高活性位点。Be的掺杂抑制了CO2CO32-的转化,降低了Li4SiO4010)表面对CO2的稳定吸附。

KAl共掺杂可以改善Li4SiO4010)表面对CO2的吸附性能。在K+Al-Li4SiO4体系中CO2的吸附能(-2.38 eV)远远大于未改性Li4SiO4的吸附能(-1.17 eV),Li4SiO4010)表面更多的电子向CO2转移,使得Li4SiO4010)表面具有更高活性,有利于CO2CO32-的转化。实验中KAl的共掺杂,其吸附总量低于KAl单掺杂,吸附能与吸附量的关系有待商讨。KAl共掺杂使Li4SiO4CO2的吸附温度降低40-60℃,使得吸附CO2的温度区间变宽,提高了低温下Li4SiO4CO2的吸附性能,并且在低CO2 (CO2, N2平衡为15%)浓度下表现出稳定的循环吸附性能。

    该论文第一作者罗光权是常州大学2021级硕士研究生,常州大学是第一作者和通讯作者单位!


英文摘要:

  Lithium silicate (Li4SiO4) has good stability, high theoretical carbon dioxide (CO2) adsorption capacity, and low regeneration temperature. It has great potential in the field of CO2 adsorption. However, it is difficult to achieve the theoretical value in practical applications and a narrow temperature window for adsorption. Therefore, further research in this area is urgently needed. In this study, experimental and simulation methods were used to investigate the effects of single doping and co-doping with K, Na, Be, Ca, and Al metals on the adsorption performance and adsorption temperature window of Li4SiO4. Single doping with K, Na, or Al makes CO2 easier to be adsorbed on the Li4SiO4 (010) surface by increasing the charge transfer from the Li4SiO4 surface to CO2. Co-doping with K and Al increases the adsorption energy of CO2 on the Li4SiO4 (010) surface, enhances hybrid peaks, and broadens the temperature range for CO2 adsorption on the Li4SiO4 surface. It exhibits stable cyclic adsorption performance under low CO2 (15% CO2, N2 balance) concentration, and more electron transfer facilitates the formation of carbonate species on the Li4SiO4 (010) surface at lower temperatures, thereby improving its CO2 adsorption performance.


图解摘要:


原文链接:https://doi.org/10.1016/j.ceramint.2023.12.246


撰稿:2021级硕士研究生罗光权    审核:朱宝忠