207063
当前位置: 首页   >  组员介绍   >  唐思邈
唐思邈 博士,助理研究员    

*个人简介:

唐思邈,山东烟台人,工学博士。2022年6月获得西安交通大学核科学与技术专业博士学位,2022年8月进入重庆大学能源与动力工程学院任弘深青年教师。目前从事研究方向包括热管反应堆设计及安全分析、高温热管传热特性研究、先进热电转换技术研究、反应堆热工水力特性研究、先进反应堆热工水力实验研究以及数值模拟等。在Applied Thermal Engineering、International Journal of Energy research、Progress of Nuclear Energy、Annals of Nuclear Energy等国际知名SCI期刊发表论文。


*教育经历:

2016/09-2022/06   西安交通大学         核科学与技术     博士学位

2021/05-2022/05   德国慕尼黑工业大学   核能工程         博士联合培养

2012/09-2016/06   华北电力大学         核科学与技术     学士学位


*研究方向:

[1] 热管反应堆设计及安全分析

[2] 高温热管传热特性研究

[3] 先进热电转换技术研究

[4] 反应堆热工水力特性研究

[5] 先进反应堆热工水力实验研究以及数值模拟


*科研项目:

 

*发表论文:

[1]  Tang S, Liu X, Wang C, et al. Thermal-electrical coupling characteristic analysis of the heat pipe cooled reactor with static thermoelectric conversion[J]. Annals of Nuclear Energy, 2022, 168: 108870.

[2] Tang S, Wang C, Zhang D, et al. Thermoelectric performance study on a heat pipe thermoelectric generator for micro nuclear reactor application[J]. International Journal of Energy Research, 2021, 45(8): 12301-12316.

[3] Tang S, Wang C, Liu X, et al. Experimental investigation of a novel heat pipe thermoelectric generator for waste heat recovery and electricity generation[J]. International Journal of Energy Research, 2020, 44(9): 7450-7463.

[4] Tang S, Wang C, Liu X, et al. Experimental investigations on startup performance of static nuclear reactor thermal prototype[J]. International Journal of Energy Research, 2020, 44(4): 3033-3048.

[5] Tang S, Sun H, Wang C, et al. Transient thermal-hydraulic analysis of thermionic space reactor TOPAZ-II with modified RELAP5[J]. Progress in Nuclear Energy, 2019, 112: 209-224.

[6] Wang C, Tang S, Liu X, et al. Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery[J]. Applied Thermal Engineering, 2020, 175: 115299.

[7] Tang S, Wang C, Su G H, et al. Thermal-Hydraulic Analysis of TOPAZ-II With Modified RELAP5[C]//International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018, 51487: V06AT08A068.

[8] Tang S, Song J, Zhang D, et al. Thermal-Hydraulic Analysis of the EBR-II SHRT-45R Unprotected Loss of Flow Experiment With Modified RELAP5[C]//International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017, 57830: V005T05A023.

[9] Tang S, et al. Transient thermal-hydraulic analysis of TOPAZ-II with modified Relap5[C]. 10th XJTU-UT-SJTU Joint International Symposium on Nuclear Science and TechnologyXi’an, China, Nov. 22-25, 2017.

[10] Tang S, et al. Experimental study on a novel electrically heated small nuclear power battery[C]. 11th XJTU-UT-SJTU Joint International Symposium on Nuclear Science and Technology Joint. Aug. 1-3, 2018, Fukushima, Japan.

[11] Sun H, Tang S, Wang C, et al. Numerical simulation of a small high-temperature heat pipe cooled reactor with CFD methodology[J]. Nuclear Engineering and Design, 2020, 370: 110907.

[12] Liu X, Sun H, Tang S, et al. Thermalhydraulic design features of a micronuclear reactor power source applied for multipurpose[J]. International Journal of Energy Research, 2019, 43(9): 4170-4183.

[13] Wang C, Sun H, Tang S, et al. Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system[J]. Nuclear Engineering and Technology, 2020, 52(1): 19-26.

[14] Wu Z, Wu Y, Tang S, et al. DEM-CFD simulation of helium flow characteristics in randomly packed bed for fusion reactors[J]. Progress in Nuclear Energy, 2018: 29-37.

[15] Wang C, Liu T, Tang S, et al. Thermal–hydraulic analysis of space nuclear reactor TOPAZ-II with modified RELAP5[J]. Nuclear Science and Techniques, 2019, 30(1): 1-11.

[16] Wu Z, Wu Y, Wang C, Tang S, et al. Experimental and numerical study on helium flow characteristics in randomly packed pebble bed[J]. Annals of Nuclear Energy, 2019: 268-277.

[17] Liu X, Zhang R, Liang Y, Tang S, et al. Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor[J]. Annals of Nuclear Energy, 2020, 142: 107412.

[18] Wang C, Zhang L, Liu X, Tang S, et al. Experimental study on startup performance of high temperature potassium heat pipe at different inclination angles and input powers for nuclear reactor application[J]. Annals of nuclear energy, 2020, 136: 107051.

[19] Wang C, Liu X, Liu M, Tang S, et al. Experimental study on heat transfer limit of high temperature potassium heat pipe for advanced reactors[J]. Annals of Nuclear Energy, 2021, 151: 107935.

[20] Song J, Liu L, Tang S, et al. Implementation of Liquid Metal Properties in RELAP5 MOD3. 2 for Safety Analysis of Sodium-Cooled Fast Reactors[C]//International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017, 57878: V009T15A002.

[21] 唐思邈, 王成龙, 苏光辉, . 小型核电源传热及热电特性实验研究[J]. 核动力工程, 2019, 40(4): 200.

[22] 唐思邈, 王成龙, 苏光辉,. 基于改进版 RELAP5 的空间堆 TOPAZ-II 热工水力分析[C]. 第一届全国空间核动力学术会议,2018.4.3-4.4,陕西,西安.

[23] 唐思邈, 王成龙, 苏光辉,. 静默式小型核电源非核原理样机实验研究[C]. 国防科技工业核动力技术创新中心暨中核核反应堆热工水力技术重点实验室 2018 年度学术年会.

[24] 唐思邈, 王成龙, 苏光辉,.多用途小型核电源非核原理样机实验研究[C]. 中国核能技术暨军民融合创新发展高端论坛.

[25] 唐思邈, 王成龙, 苏光辉,. 小型核电源原理样机传热及热电性能研究[C]. 第十六届全国反应堆热工流体学术会议暨中核核反应堆热工水力技术重点实验室2019年学术年会.

[26] 唐思邈, 王成龙, 苏光辉,. 新型静默式海洋核动力电源原理样机传热及热电性能研究[C]. 2019中国工程热物理学会热能动力技术学术会议.

[27] 唐思邈, 王成龙, 苏光辉,. 基于小型核电源的热管温差发电耦合特性研究[C]. 2019全国新堆与研究堆第十一届学术报告会.

[28] 宋健,刘利民, 唐思邈. 基于RELAP5MOD3.2的钠冷快堆热工水力系统分析程序开发及验证[J]. 原子能科学技术, 2017(6).

[29] 伍振兴 , 巫英伟, 唐思邈. 随机填充球床通道内氦气流动特性实验研究[J]. 原子能科学技术, 52(7).

[30] 王成龙;唐思邈;苏光辉;田文喜;秋穗正;一种小型核电源集成试验装置.专利号:2018103952372.

[31] 王成龙;唐思邈;苏光辉;田文喜;秋穗正;一种高温碱金属热管热态灌装回路系统及方法.专利号:2019104723464.

[32] 王成龙;唐思邈;苏光辉;田文喜;秋穗正;一种基于高温热管传热的静态温差发电装置.专利号:2018115972396.