周圣高
邮箱:sgzhou@sjtu.edu.cn
办公室:理科大楼数学楼716室
主页:https://math.sjtu.edu.cn/faculty/sgzhou/
代表性科研成果
B. Li, Z. Zhang, and S. Zhou, The Calculus of Boundary Variations and the Dielectric Boundary Force in the Poisson--Boltzmann Theory for Molecular Solvation, To appear in J. Nonlinear Sci., 2021.
S. Zhou, Y. Zhang, L. Cheng, and B. Li, Prediction of multiple dry-wet transition pathways with a mesoscale variational approach, To appear in J. Chem. Phys., 2021.
C. Liu, C. Wang, S. M. Wise, X. Yue, and S. Zhou, A positivity-preserving, energy stable and convergent numerical scheme for the Poisson--Nernst--Planck system, Math. Comput., 2071-2106, 2021.
Y. Qian, C. Wang, and S. Zhou, A Positive and Energy Stable Numerical Scheme for the Poisson--Nernst--Planck--Cahn--Hilliard Equations with Steric Interactions, J. Comput. Phys. , 426, 109908, 2021.
C. Duan, W. Chen, C. Liu, X. Yue, and S. Zhou, Structure-Preserving Numerical Methods for Nonlinear Fokker--Planck Equations with Nonlocal Interactions by an Energetic Variational Approach, SIAM J. Sci. Comput. , 43(1), B82-B107, 2021.
J. Ding, H. Sun, and S. Zhou, Hysteresis and Linear Stability Analysis on Multiple Steady-State Solutions to the Poisson--Nernst--Planck equations with Steric Interactions: A Numerical Approach, Phys. Rev. E , 102, 053301, 2020.
J. Ding, Z. Wang, and S. Zhou, Structure-Preserving and Efficient Numerical Methods for Ion Transport, J. Comput. Phys. , 418, 109597, 2020.
S. Zhou, R. G. Weiss, L. Cheng, J. Dzubiella, J. A. McCammon, and B. Li, Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics, Proc. Natl Acad. Sci. USA (PNAS) , 116(30), 14989-14994, 2019.
J. Ding, Z. Wang, and S. Zhou, Positivity Preserving Finite Difference Methods for Poisson–Nernst–Planck Equations with Steric Interactions: Application to Slit-Shaped Nanopore Conductance, J. Comput. Phys. , 397, 108864, 2019.
Y. Qian, Z. Wang, and S. Zhou, A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation, J. Comput. Phys., 386, 22-36, 2019.
S. Zhou, Y. Wang, X. Yue, and C. Wang, A Second Order Numerical Scheme for the Annealing of Metall-Intermetallic Laminate Composite: A Ternary Reaction System, J. Comput. Phys., 374, 1044-1060, 2018.
H. Sun, S. Zhou, L. Cheng, and B. Li, Numerical methods for solvent Stokes flow and solute-solvent interfacial dynamics of charged molecules, J. Comput. Phys., 374, 533-549, 2018.
L. Ji, P. Liu, Z. Xu, and S. Zhou, Asymptotic analysis on dielectric boundary effects of modified Poisson--Nernst--Planck equations, SIAM J. Appl. Math., 78(3), 1802-1822, 2018.
S. Zhou, H. Sun, L. Cheng, J. Dzubiella, B.Li, and J. A. McCammon, Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations, J. Chem. Phys. , 145, 054114, 2016.
S. Zhou, L. Cheng, H.Sun, J. Che, J. Dzubiella, B. Li, and J. A. McCammon, LS-VISM: A Software Package for Analysis of Biomolecular Solvation, J. Comput. Chem. , 36 (14), 1047-1059, 2015.
B. Li, H. Sun, and S. Zhou, Stability of a cylindrical solute-solvent interface: Effect of geometry, electrostatics, and hydrodynamics, SIAM J. Appl. Math., 75(3), 907-928, 2015.
S. Zhou, L. Cheng, J. Dzubiella, B. Li, and J. A. McCammon, Variational Implicit Solvation with Poisson-Boltzmann Theory, J. Chem. Theory Comput., 10(4), 1454-1467, 2014.
B. Li, P. Liu, Z. Xu, and S. Zhou, Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length, Nonlinearity, 26, 2899-2922, 2013. (Highlight of 2013)
S. Zhou, K. E. Rogers, C. Oliveira, R.Baron, L. Cheng, J. Dzubiella, B. Li, and J. A. McCammon, Variational Implicit-Solvent Modeling of Host-Guest Binding: A Case Study on Cucurbit[7]uril, J. Chem. Theory Comput., 9, 4195-4204, 2013.
L. Cheng, B. Li, M. White, and S. Zhou, Motion of a Cylindrical Dielectric Boundary, SIAM J. Appl. Math., 73(1), 594-616, 2013.
S. Zhou, Z. Wang, and B. Li, Mean-field Description of Ionic Size Effects with Non-uniform Ionic Sizes: A Numerical Approach, Phys. Rev. E, 84, 021901, 2011.