当前位置: X-MOL首页全球导师 国内导师 › 彭庆宇

个人简介

彭庆宇,1984年生,教授,博士生导师,哈工大航天学院复合材料与结构研究所。 2014年毕业于哈尔滨工业大学获得工学博士学位,同年通过“哈工大青年拔尖人才选聘计划”被聘为副教授留在哈尔滨工业大学航天学院工作,2019年通过“哈工大青年拔尖人才选聘计划”被聘为教授,长期从事纳米碳宏观体结构-功能-智能一体化复合材料的设计、制造、评价及应用方面的研究工作,取得了多项有意义的成果。在《Advanced Materials》、《ACS Nano》、《Advanced Functional Materials》、《Nano Energy》、《Materials Horizons》、《Engineering》等著名期刊上发表论文60余篇,SCI他引3300余次,H-index 为31,研究结果被《Advanced Materials》《Carbon》《Journal of Materials Chemistry》封面报道,ESI高被引论文1篇,申请专利40余项,授权20余项。同时积极将基础研究成果向工程应用转化,其研发的纳米碳复合材料分散技术已成功应用于中国运载火箭技术研究院某型号结构部件,解决了碳纤维复合材料不抗压、不抗剪的国际难题(中国运载火箭技术研究院主页报道);作为团队技术核心,参与柔性热防护结构的研制,成功助力“长征五号”首飞。承担国家部委重点项目、国家自然科学基金青年基金、国家部委国家重点实验室基金重点项目等项目10余项。 工作经历 2014年11月-2018年12月 哈尔滨工业大学 航天学院 副教授(青年拔尖) 2019年1月-今 哈尔滨工业大学 航天学院 教授(青年拔尖) 教育经历 2004年9月-2008年7月,哈尔滨工业大学,航天学院,复合材料与工程,学士学位 2008年9月-2010年7月,哈尔滨工业大学,航天学院,材料学,硕士学位 2010年9月-2014年7月,哈尔滨工业大学,航天学院,材料学,博士学位

研究领域

纳米碳宏观体及其复合材料 轻质复合材料与结构 复合材料结构功能一体化

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Liu, J, Xu, L, Ji, Q, et al. A MXene-based light-driven actuator and motor with self-sustained oscillation for versatile applications[J]. Advanced Functional Materials. Accept. (通讯作者) Yan Q, Ding R, Zheng H, et al. Bio‐inspired stimuli‐responsive Ti3C2Tx /PNIPAM anisotropic hydrogels for high‐performance actuators[J]. Advanced Functional Materials, 2023, 8:634.(通讯作者) Liu Z, Wang G, Li P, et al. Gradient in-plane oriented porous carbon inspired by fabrication of toasts for elegant EMI shielding performance[J]. Carbon, 2023, 207:136–143.(通讯作者) Liu Z, Xue F, Zhao X, et al. Anti-stacking synthesis of MXene-reduced graphene oxide sponges for aqueous zinc-ion hybrid supercapacitor with improved performance[J]. Journal of Materials Science & Technology, 2023, 154:22–29.(通讯作者) Xu L, Zheng H, Xue F, et al. Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion[J]. Chemical Engineering Journal, 2023, 463(25):142392.(通讯作者) Ding R, Xiong J, Yan Q, et al. Achieving fast interfacial solar vapor generation and aqueous acid purification using Ti3C2Tx MXene/PANI non-woven fabrics[J]. Materials horizons, 2023.(通讯作者) Ding R, Yan Q, Xue F, et al. Dual protective porous Ti3C2Tx MXene/polyimide composite film for thermal insulation and electromagnetic interference shielding[J]. Small, 2023:e2304946.(通讯作者) Chen Z, Peng Q, Hu Y, et al. Dried bonito flakes-inspired moisture-responsive actuator with a gradient structure for smart devices[J]. Journal of Materials Science & Technology, 2023, 167:152–160.(通讯作者) Liu Z, Ding R, Xue F, et al. MXene-reduced graphene oxide sponge-based solar evaporators with integrated water-thermal management by anisotropic design[J]. Communications Materials, 2023, 4(1):46552.(通讯作者) Chen Z, Gao B, Li P, et al. Multistimuli-responsive actuators derived from natural materials for entirely biodegradable and programmable untethered soft robots[J]. ACS nano, 2023.(通讯作者) Xiong J, Ding R, Liu Z, et al. High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management[J]. Chemical Engineering Journal, 2023, 474:145972.(通讯作者) Ding R, Zheng H, Zhao X, et al. Skin inspired multifunctional crumpled Ti3C2Tx MXene/tissue composite film[J]. Composites Part A: Applied Science and Manufacturing, 2022, 158:106967.(通讯作者) Xu L, Xue F, Zheng H, et al. An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light[J]. Nano Energy, 2022, 103:107848.(通讯作者) Li P, Zheng H, Zhao X, et al. Wide range pressure sensor construction based on tension-compression conversion and gradient stiffness design strategy[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161(9):107082.(通讯作者) Xue F, Peng Q, Liu Z, et al. 3D solvent-responsive actuator capable of directionally outputting thrust[J]. Cell Reports Physical Science, 2022, 3(12):101183.(通讯作者) Xiong J, Zheng H, Ding R, et al. Multifunctional non-woven fabrics based on interfused MXene fibers[J]. Materials & Design, 2022, 223:111207.(通讯作者) Meng R, Zhang T, Liu X, et al. Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance[J]. Carbon, 2021, 185:186–197. Xue F, Zheng H, Peng Q, et al. An ultra-broad-range pressure sensor based on a gradient stiffness design[J]. Materials Horizons, 2021, 8(8):2260–2272.(通讯作者) Zhao Y, Xue F, Miao L, et al. Roles of twisting-compression operations on mechanical enhancement of carbon nanotube fibers[J]. Carbon, 2021, 172:41–49.(通讯作者) Zhu Y, Zhao X, Peng Q, et al. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy[J]. Nanoscale Advances, 2021, 3(19):5683–5693.(通讯作者) Li Y, Ning W, Peng Q, et al. Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/Carbon nanotube nanocomposite membranes[J]. Nano Research, 2021, 14(1):100–107. Chen Q, Peng Q, Zhao X, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon, 2020, 158:704–710.(通讯作者) Li P, Chen Q, Peng Q, et al. Paraffin/graphene sponge composite as a shape-stabilized phase change material for thermal energy storage[J]. Pigment & Resin Technology, 2020, 50(5):412–418.(通讯作者) Li J, Yang S, Jiao P, et al. Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam[J]. Carbon, 2020, 157:427–436. Wang C, Zhao Y, Zhang Y, et al. Partially unzipping carbon nanotubes: A route to synchronously improve fracture strength and toughness of nanocomposites inspired by pinning effect of screw[J]. Materials Today Communications, 2020, 25:101355.(通讯作者) Xu L, Peng Q, Zhao X, et al. A photoactuator based on stiffness-variable carbon nanotube nanocomposite yarn[J]. ACS applied materials & interfaces, 2020, 12(36):40711–40718.(通讯作者) Yuan Y, Xiong Y, Li J, et al. Large‐scale synthesis of hollow carbon fibers with ultra‐large diameter by thermally controlled pyrolysis[J]. Journal of the American Ceramic Society, 2020, 103(10):5629–5637. Zhao X, Zhou M, Peng Q, et al. Mechanical properties improvement in highly and aligned dispersed graphene oxide/bismaleimide nanocomposites based on graphene oxide sponge[J]. Advanced Engineering Materials, 2020, 22(8):2000231.(通讯作者) Zhu Y, Peng Q, Qin Y, et al. Graphene–carbon composite films as thermal management materials[J]. ACS Applied Nano Materials, 2020, 3(9):9076–9087.(通讯作者) Li Y, Wang S, Peng Q, et al. Active control of graphene-based membrane-type acoustic metamaterials using a low voltage[J]. Nanoscale, 2019, 11(35):16384–16392.(通讯作者) Li Y, Sun L, Xu F, et al. Electromagnetic and acoustic double-shielding graphene-based metastructures[J]. Nanoscale, 2019, 11(4):1692–1699. Qin Y, Peng Q, Zhu Y, et al. Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure[J]. Nanoscale Advances, 2019, 1(12):4895–4903.(通讯作者) Xu L, Peng Q, Zhu Y, et al. Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn[J]. Nanoscale, 2019, 11(17):8124–8132.(通讯作者) Yang M, Yuan Y, Yin W, et al. Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption[J]. Applied Surface Science, 2019, 469:607–616. Zhao X, Xu L, Chen Q, et al. Highly conductive multifunctional rGO/CNT hybrid sponge for electromagnetic wave shielding and strain sensor[J]. Advanced Materials Technologies, 2019, 4(9):1900443.(通讯作者) Xu F, Chen R, Lin Z, et al. Superflexible interconnected graphene network nanocomposites for high-performance electromagnetic interference shielding[J]. ACS omega, 2018, 3(3):3599–3607.(通讯作者) Xu F, Chen R, Lin Z, et al. Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper[J]. Journal of Materials Chemistry C, 2018, 6(45):12321–12328.(通讯作者) Yuan Y, Yin W, Yang M, et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon, 2018, 130:59–68. Li Y, Xu F, Lin Z, et al. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale, 2017, 9(38):14476–14485. Li J, Wu Y, Yang M, et al. Electrospun Fe2O3 nanotubes and Fe3O4 nanofibers by citric acid sol-gel method[J]. Journal of the American Ceramic Society, 2017, 100(12):5460–5470. Li J, Wu Y, Cao J, et al. Excellent flexibility of high-temperature-treated SiO2-TiO2 hybrid fibres and their enhanced luminescence with Eu3%2B doping[J]. Ceramics International, 2017, 43(15):12710–12717. Peng Q, Qin Y, Zhao X, et al. Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly[J]. ACS applied materials & interfaces, 2017, 9(50):44010–44017. Yuan Y, Sun X, Yang M, et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding[J]. ACS applied materials & interfaces, 2017, 9(25):21371–21381. Yuan Y, Liu L, Yang M, et al. Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding[J]. Carbon, 2017, 123:223–232. Ding Y, Zhu J, Wang C, et al. Multifunctional three-dimensional graphene nanoribbons composite sponge[J]. Carbon, 2016, 104:133–140. Peng Q, Wei H, Qin Y, et al. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application[J]. Nanoscale, 2016, 8(42):18042–18049. Wang C, Ding Y, Yuan Y, et al. Multifunctional, highly flexible, free-standing 3D polypyrrole foam[J]. Small, 2016, 12(30):4070–4076. Yuan Y, Ding Y, Wang C, et al. Multifunctional stiff carbon foam derived from bread[J]. ACS applied materials & interfaces, 2016, 8(26):16852–16861.(通讯作者) Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS nano, 2015, 9(9):8933–8941. Shang Y, Wang C, He X, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions[J]. Nano Energy, 2015, 12:401–409. Shang Y, He X, Wang C, et al. Large-deformation, multifunctional artificial muscles based on single-walled carbon nanotube yarns[J]. Advanced Engineering Materials, 2015, 17(1):14–20. Wang C, Li Y, He X, et al. Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene[J]. Nanoscale, 2015, 7(17):7550–7558. Wang C, He X, Tong L, et al. Tensile failure mechanisms of individual junctions assembled by two carbon nanotubes[J]. Composites Science and Technology, 2015, 110:159–165. Yao Y, Lu H, Li J, et al. Electrospun silica-based inorganic/organic hybrid membranes with tunable performance in appropriate solvent systems[J]. RSC Adv, 2015, 5(108):89113–89120. Peng Q, Li Y, He X, et al. Graphene nanoribbon aerogels unzipped from carbon nanotube sponges[J]. Advanced materials, 2014, 26(20):3241–3247. Wang C, He X, Shang Y, et al. Multifunctional graphene sheet–nanoribbon hybrid aerogels[J]. J. Mater. Chem. A, 2014, 2(36):14994–15000. Wang C, Li Y, Tong L, et al. The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites[J]. Carbon, 2014, 69:239–246. Wang C, Peng Q, Wu J, et al. Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading[J]. Carbon, 2014, 80:279–289. Zhao W, Li Y, Wang S, et al. Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating[J]. Carbon, 2014, 76:19–26. Li Y, Li Y, Ding Y, et al. Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1,3-propodiamine[J]. Composites Science and Technology, 2013, 85:36–42. Li Y, Shang Y, He X, et al. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators[J]. ACS nano, 2013, 7(9):8128–8135. Peng Q, Li Y, He X, et al. Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization[J]. Composites Science and Technology, 2013, 74:37–42. Sun J, Li Y, Peng Q, et al. Macroscopic, flexible, high-performance graphene ribbons[J]. ACS nano, 2013, 7(11):10225–10232. Wang C, He X, Tong L, et al. Theoretical prediction and experimental verification of pulling carbon nanotubes from carbon fiber prepared by chemical grafting method[J]. Composites Part A: Applied Science and Manufacturing, 2013, 50:1–10. Zhang X, Li Y, Zhu Z, et al. Microstructure, mechanical and oxidation properties of in-situ synthesized (Y2O3 %2B TiC)/Ti-4.5Si composites[J]. International Journal of Materials Research, 2013, 104(1):65–70. Guo Q, Peng Q, Li Y, et al. Dependence of amino-functionalization on interfacial adhesion strength in epoxy/Al laminated composites[J]. Polymers and Polymer Composites, 2012, 20(5):445–452. He X, Wang C, Tong L, et al. Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber[J]. Carbon, 2012, 50(10):3782–3788. He X, Wang C, Tong L, et al. A pullout model for inclined carbon nanotube[J]. Mechanics of Materials, 2012, 52:28–39. Li Y, Peng Q, He X, et al. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers[J]. J. Mater. Chem., 2012, 22(36):18748. Peng Q, He X, Li Y, et al. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites[J]. J. Mater. Chem., 2012, 22(13):5928. Shang Y, He X, Li Y, et al. Super-stretchable spring-like carbon nanotube ropes[J]. Advanced materials, 2012, 24(21):2896–2900. Mei L, Li Y, Wang R, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites with high interfacial strength[J]. Polymers and Polymer Composites, 2011, 19(2-3):107–112. Mei L, He X, Li Y, et al. Enhancement of composite-metal interfacial adhesion strength by dendrimer[J]. Surface and Interface Analysis, 2011, 43(3):726–733. Zhang X, Li Y, Song G, et al. Microstructure and mechanical properties of in situ TiC and Nd2O3 particles reinforced Ti–4.5wt.%Si alloy composites[J]. Materials & Design, 2011, 32(8-9):4327–4332. Mei L, He X, Li Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters, 2010, 64(22):2505–2508.

推荐链接
down
wechat
bug