当前位置: X-MOL首页全球导师 国内导师 › 周宝文

个人简介

教育背景 2013.09 – 2016.07 中国科学院化学研究所 博士 2010.09 – 2013.07 中国科学院广州化学研究所 硕士 2006.09 – 2010.07 华南理工大学 学士 工作经历 2020.12 – 至今 上海交通大学机械与动力工程学院 长聘教轨副教授 2018.10 – 2020.12 美国密歇根大学安娜堡分校 博士后 2017.06 – 2018.10 加拿大麦吉尔大学 博士后 2016.07 – 2017.06 中国科学院化学研究所助理研究员 科研项目 1. 国家海外高层次人才计划,2022-2024,主持。 2. 上海市科技创新行动计划,2022-2026年,主持。 3. 国家自然科学基金青年项目,2022-2024,主持。 4. 上海交通大学“深蓝计划”项目,2023-2024,主持。 5. 上海交通大学“小米青年学者”项目,2022-2024,主持。 6. 上海交通大学科研启动项目,2021-2023,主持。 7. 上海市基础研究特区计划课题,2021-2024,主持。 教学工作 研究生: 2023-至今 《可再生合成燃料与碳中和动力技术前沿》, 专业前沿课,主持建设。 本科生: 2022级本科生班主任 软件版权登记及专利 1. B. W. Zhou, Z. T. Mi, CO2 REDUCTION TOWARD METHANE. UAS PATENT. NO. 11512399. 2. B. W. Zhou, Z. T. Mi, X. H. Kong, H. Guo, CO2 CONVERSION WITH NANOWIRE-NANOPARTICLE ARCHITECTURE. PCT/US2020/043449. 3. B. W. Zhou, Z. T. Mi, P. F. Ou, J. Song, NANOSTRUCTURED-BASED ATOMIC SCALE LECTROCHEMICAL REACTION CATALYSIS. PCT/US2021/050444. 4. Z. T. Mi, S. Vanka, B. W. Zhou. WATER SPLITTING DEVICE PROTECTION. PCT/US2021/056804. 5. Z. T. Mi, B. W. Zhou, Y. Q. Chen, J. Song, R. Rashid, PHOTOCATALYTIC CO2 REDUCTION WITH CO-CATALYST-DECORATED NANOSTRUCTURES. US PATENT. APPL.NO.63349406 荣誉奖励 1. 2022 年首届上海交通大学“小米青年学者” 2. 2020 年世界十大科技进展新闻 3. 2016 年中国科学院宝洁优秀毕业生奖学金 4. 2016 年中国科学院化学研究所所长奖学金 5. 2015 年中国科学院化学研究所优秀青年科学家奖学金

研究领域

1. 面向碳中和未来的人工光合作用集成器件与系统的设计、开发与应用; 2. 可再生合成燃料的基本科学问题和关键技术难题; 3. 化学储能与绿色动力。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. B. W. Zhou#*, J. L. Li#, X. Y. Dong, L. Yao*, GaN Nanowires/Si Photocathodes for CO2 Reduction towards Solar Fuels and Chemicals: Advances, Challenges, and Prospects. Sci. China Chem. 2023, 66, 739-754. 2. B. W. Zhou*, S. H. Sun*, Approaching the commercial threshold of solar water splitting toward hydrogen by III-nitrides nanowires. Frontiers in Energy 2023, https://doi.org/10.1007/s11708-023-0870-z. 3. P. Zhou, I. A. Navid, Y. J. Ma, Y. X. Xiao, P. Wang, Z. W. Ye, B. W. Zhou, K. Sun, Z. T. Mi*, Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66-70. 4. Z. Z. Wang#, B. W. Sheng#, Y. Q. Chen#, S. M. Sadaf, J. L. Li, J. J. Yang, J. Song*, L. Yao, Y. Yu*, L. Zhu, X. Q. Wang*, Z. Huang, B. W. Zhou*. Photocatalytic syngas production from bio-derived glycerol and water on AuIn-decorated GaN nanowires supported by Si wafer. Green Chem. 2023,25,288-295. 5. R. T. Rashid#, Y. Q. Chen#, X. D. Liu , M. X. Liu , J. Song , Z. T. Mi*, B. W. Zhou*, Tunable Green Syngas Generation from CO2 and H2O with Sunlight as the Only Energy Input. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, 26, e2121174119. 6. J. L. Li#, B. W. Sheng#, Y. Q. Chen#, S. M. Sadaf, J. J. Yang, P. Wang, H. Pan, T. Ma, L. Zhu, J. Song*, H. Lin, X. Q. Wang*, Z. Huang*, B. W. Zhou*. Oxynitride-surface engineering of rhodium-decorated gallium nitride for efficient thermocatalytic hydrogenation of carbon dioxide to carbon monoxide. Commun. Chem. 2022, 5, 107. 7. J. X. Zhai, B. W. Zhou*, H. H. Wu*, S. Q. Jia, M. E. Chu, S. T. Han, W. Xia, M. Y. He*, B. X. Han*, Photocatalytic cleavage of C(sp3)-N bond in trialkylamines to dialkylamines and olefins. ChemSusChem. 2022, e202201119. 8. J. X. Zhai, B. W. Zhou*, H. H. Wu*, S. Q. Jia, M. E. Chu, S. T. Han, W. Xia, M. Y. He*, B. X. Han*, Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/AgCl@SiO2. Chem. Sci. 2022, 13, 4616-4622. 9. B. W. Zhou#, P. F. Ou#, N. Pant, S. B. Chen, S. Vanka, S. Chu, R. T. Rashid, G. Botton, J. Song*, Z. T. Mi*, Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 3, 1330-1338. 10. B. W. Zhou#, P. F. Ou#, R. T. Rashid#, S. Vanka, K. Sun, L. Yao, H. D. Sun, J. Song*, Z. T. Mi*, Few-atomic-layers iron for hydrogen evolution from water by photoelectrocatalysis. iScience. 2020, 23,101613. 11. B. W. Zhou#, X. H. Kong#, S. Vanka, S. B. Cheng, N. Pant, S. Chu, P. Ghamari, Y. C. Wang, G. Botton, H. Guo, Z. T. Mi*, A GaN:Sn nanoarchitecture integrated on a silicon platform for converting CO2 to HCOOH by photoelectrocatalysis. Energy Environ. Sci. 2019, 12, 2842-2848. 12. B. W. Zhou#, X. H. Kong#, S. Vanka, S. Chu, P. Ghamari, Y. C. Wang, N. Pant, I. Shih, H. Guo*, Z. T. Mi*, GaN nanowire as an outstanding linker of MoSx and planar silicon for photoelectrocatalytic water splitting. Nat. Commun. 2018, 9, 3856. 13. B. W. Zhou, J. L. Song, C. Xie, C. J. Chen, Q. L. Qian, B. X. Han*, Mo-Bi-Cd ternary metal chalcogenides: highly efficient photocatalyst for CO2 reduction to formic acid under visible light. ACS Sustainable Chem. Eng. 2018, 6, 5754-5759. 14. B. W. Zhou, J. L. Song*, Z. R. Zhang, Z. W. Jiang, P. Zhang, B. X. Han*, Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2. Green Chem. 2017, 19, 1075-1081. 15. B. W. Zhou, J. L. Song*, T. B. Wu, H. Z. Liu, C. Xie, G. Y. Yang, B. X. Han*, Simultaneous and selective transformation of glucose to arabinose and nitrosobenzene to azoxybenzene driven by visible-light. Green Chem. 2016, 18, 3852-3857. 16. B. W. Zhou, J. L. Song*, H. C. Zhou, T. B. Wu, B. X. Han*, Using the hydrogen and oxygen in water directly for hydrogenation reactions and glucose oxidation by photocatalysis. Chem. Sci. 2016, 7, 463–468. 17. B. W. Zhou, J. L. Song*, H. C. Zhou, L. Q. Wu, T. B. Wu, Z. M. Liu, B. X. Han*, Light-driven integration of the reduction of nitrobenzene to aniline and the transformation of glycerol into valuable chemicals in water. RSC Adv. 2015, 5, 36347-36352. 18. B. W. Zhou, C. Y. Ha, L. L. Deng, J. Q. Mo, C. N. Sun, M. M. Shen*, Preparation of surfactant with the aid of ultrasonic treatment via alkylation of sodium lignosulfonate. Acta Polym. Sin. 2013, 11, 1363-1368. 19. S. Vanka, B. W. Zhou, R. A. Awni, Z. N. Song, F. A. Chowdhury, X. D. Liu, H. Hajibabaei, W. Shi, Y. X. Xiao, I. A. Navid, A. Pandey, R. Chen, G. A. Botton, T. W. Thomas, D. W. Wang, Y. F. Yan, Z. T. Mi*, InGaN/Si double-junction photocathode for unassisted solar water splitting. ACS Energy. Lett. 2020, 5, 3741-3751. 20. J. L. Song*, B. W. Zhou, H. Z. Liu, C. Xie, Q. L. Meng, Z. R. Zhang, B. X. Han*, Biomass-derived gamma-valerolactone as an efficient solvent and catalyst for the transformation of CO2 to formamides. Green Chem. 2016, 18, 3956-3961. 21. J. L. Song*, B. W. Zhou, H. C. Zhou, L. Q. Wu, Q. L. Meng, Z. M. Liu, B. X. Han*, Porous zirconium-phytic acid hybrid: a highly efficient catalyst for Meerwein-Ponndorf-Verley reductions. Angew. Chem. Int. Edit. 2015, 54, 9399-9403. 22. M. X. Liu, L. D. Tan, B. W. Zhou, L. Li, Z. T. Mi*, C. J. Li*. Group-III nitrides catalyzed transformation of organic molecules. Chem. 2020, https://doi.org/10.1016/j.chempr.2020.09.014. 23. X. Chao, J. L. Song*, B. W. Zhou, J. Y. Hu, Z. R. Zhang, P. Zhang, Z. W. Jiang, B. X. Han*, Porous hafnium phosphonate: novel heterogeneous catalyst for conversion of levulinic acid and esters to gamma-valerolactone. ACS Sustainable Chem. Eng. 2016, 4, 6231-6236. 24. L. Q. Wu, J. L. Song*, B. W. Zhou, T. B. Wu, T. Jiang, B. X. Han*, Preparation of Ru/Graphene using glucose as carbon source and hydrogenation of levulinic acid to gamma-valerolactone. Chem. Asian. J. 2016, 11, 2792-2796. 25. S. Chu, P. F. Ou, P. Ghamari, S, Vanka, B. W. Zhou, I. Shih, J. Song*, Z. T. Mi*, Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 2018, 140, 7869-7877.

学术兼职

Science Bulletin/《科学通报》特邀编委; The Innovation 青年编委;Frontiers in Energy 客座编辑;中国能源学会专家委员会委员。

推荐链接
down
wechat
bug