当前位置: X-MOL首页全球导师 国内导师 › 李洲龙

个人简介

教育背景 2011.09–2018.06,上海交通大学,机械工程,硕博连读 2016.08–2017.08,英属哥伦比亚大学,机械制造,联合培养博士 2007.09–2011.07,大连理工大学,机械制造及其自动化,学士 工作经历 2021.08–至今,上海交通大学,机械与动力工程学院,长聘教轨副教授 2019.06–2020.10,柏林工业大学,机床管理学院,洪堡学者/博士后 2018.10–2019.05,哈德斯菲尔德大学,精密技术中心,访问学者 2018.06–2021.08,上海交通大学,机械与动力工程学院,博士后 科研项目 2023.01-2026.12,国家自然科学基金联合基金重点项目“航空发动机复杂曲面薄壁件高效自适应加工理论与关键技术研究”,交大方负责人 2023.01-2026.12,国家自然科学基金面上项目“大口径曲面光学元件的大气等离子体宽行抛光技术研究”,负责人 2022.04-2024.03,国防科技166项目“****的原子级表面加工技术研究”,负责人 2021.10-2023.09,上海市浦江人才计划项目“大型蒙皮机器人加工的随动支撑设计与误差补偿技术研究”,负责人 2020.01–2022.12,国家自然科学基金青年项目“大型薄壁零件机器人铣削的动态性能优化与加工变形补偿技术”,负责人 2018.10–2020.10,博士后国际交流计划派出项目“大型复杂薄壁零件机器人加工技术研究”,负责人 2020.03–2022.02,中南大学高性能复杂制造国家重点实验室开放课题,负责人 2020.01–2021.12,华中科技大学数字制造装备与技术国家重点实验室开放课题,负责人 2014.01–2017.12,国家杰出青年基金项目“数字化制造与数控加工技术”,主要完成人 教学工作 智能制造装备与技术,研究生前沿课,48学时 软件版权登记及专利 [1] 李洲龙,梁锐彬,朱利民;多通道电容耦合式等离子体射流装置及工作方法;申请号:2021109768685;申请日期:2021.08.24 [2] 朱利民,李洲龙;平底刀五轴加工铣削力精确预报方法;申请号:201510875933.X;授权日期:2018.11.16;授权号:CN105488284B [3] 朱利民,李洲龙,牛金波,王信智;五轴数控侧铣加工铣削力预报方法;申请号:201410145849.8;授权日期:2017.01.18;授权号:CN103955169B [4] 李洲龙,丁烨,朱利民;螺旋铣孔过程中切削力预报和稳定性判别方法;申请号:201510875935.9,授权日期:2017.09.15;授权号:CN105414616B [5] 李洲龙,王续跃,王东魏,高航,刘巍;一种接触式大直径现场测量装置及方法;申请号:201110075754.X;授权日期:2012.07.04;授权号:CN102155907B [6] 李洲龙,王续跃,王东魏,高航,刘巍;一种基准尺法大直径测量π尺装置及测量方法;申请号:201010522099.3;授权日期:2013.04.17;授权号:CN102042790B [7] 毕庆贞,卢耀安,李洲龙,朱利民,丁汉;叶轮曲面直纹化与模型重构软件V1.0;登记号:2014SR122599 荣誉奖励 2021 上海市浦江人才计划(特需人才类) 2019年 第9届“上银优秀机械博士论文奖”优秀奖 2019年 德国洪堡学者 2018年 上海交通大学优秀博士学位论文 2018年 上海市优秀毕业生

研究领域

(1)数字化智能化制造 机器人智能制造技术与装备 基于深度学习的智能加工技术 (2) 超精密表面制造 五轴大气等离子体加工技术 机器人力控抛光技术

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Wang R, Li ZL*, Ren MJ, Zhu LM. A registration-based stitching method for obtaining high-accuracy material removal distribution in the sub-aperture polishing process[J]. Precision Engineering, 2022, 77: 251–262. [2] Huang WW, Li LL, Li ZL*, Zhu ZW, Zhu LM*. Robust high-bandwidth control of nano- positioning stages with Kalman filter based extended state observer and H ∞ control. The Review of scientific instruments, 2021, 92(6):065003. [3] Xiong G, Li ZL, Ding Y, Zhu LM*. A closed-loop error compensation method for robotic flank milling. Robotics and Computer-Integrated Manufacturing, 2020, 63: 101928. [4] Chen ZZ, Li ZL, Niu JB, Zhu LM*. Chatter detection in milling processes using frequency-domain Rényi entropy. International Journal of Advanced Manufacturing Technology, 2020, 106: 877–90. [5] Xiong G, Li ZL, Ding Y, Zhu LM*. Integration of optimized feedrate into an online adaptive force controller for robot milling. International Journal of Advanced Manufacturing Technology, 2020, 106: 1533-1542. [6] Li ZL, Zhu LM*. Compensation of deformation errors in five-axis flank milling of thin-walled parts via tool path optimization. Precision Engineering, 2019, 55: 77-87. [7] Wang XZ, Li ZL, Bi QZ, Ding H, Zhu LM*. An accelerated convergence approach for real-time deformation compensation in large thin-walled parts machining. International Journal of Machine Tools and Manufacture, 2019, 142: 98-106. [8] Li ZL, Tuysuz O, Zhu LM, Altintas Y*. Surface form error prediction in five-axis flank milling of thin-walled parts. International Journal of Machine Tools and Manufacture, 2018, 128: 21-32. [9] Altintas Y*, Tuysuz O, Habibi M, Li ZL. Virtual compensation of deflection errors in ball end milling of flexible blades. CIRP Annals Manufacturing Technology, 2018, 67(1): 365-368. [10] Li ZL, Zhu LM*. An Accurate method for determining cutter-workpiece engagements in five-axis milling with a general tool considering cutter runout. Trans. of the ASME, Journal of Manufacturing Science and Engineering, 2018, 140(2): 021001. [11] Li ZL, Ding Y, Zhu LM*. Accurate Cutting force prediction of helical milling operations considering the cutter runout effect. International Journal of Advanced Manufacturing Technology, 2018, 92(9-12): 4133-4144. [12] Li ZL, Zhu LM*. Mechanistic Modeling of five-axis machining with a flat end mill considering bottom edge cutting effect. Trans. of the ASME, Journal of Manufacturing Science and Engineering, 2016, 138(11): 111012. [13] Li ZL, Niu JB, Wang XZ, Zhu LM*. Mechanistic modeling of five-axis machining with a general end mill considering cutter runout. International Journal of Machine Tools and Manufacture, 2015, 96: 67-79. [14] Li ZL, Zhu LM*. Arc-surface intersection method to calculate cutter-workpiece engagements for generic cutter in five-axis milling. Computer-Aided Design, 2015, 73: 1-10. [15] Li ZL, Zhu LM*. Envelope Surface modeling and tool path optimization for five-axis flank milling considering cutter runout. Trans. of the ASME, Journal of Manufacturing Science and Engineering, 2014, 136(4): 041021.

学术兼职

IEEE Transactions on Automation Science and Engineering、Mechanism and Machine Theory、Chinese Journal of Aeronautics、Journal of Engineering Manufacture、International Journal of Advanced Manufacturing Technology、International Journal of Computer Integrated Manufacturing等期刊审稿人

推荐链接
down
wechat
bug