当前位置: X-MOL首页全球导师 国内导师 › 颜志淼

个人简介

2020年8月-至今,上海交通大学,长聘教轨副教授(Associate Professor),博导 2022年11月-至今,上海交通大学,工程力学系副主任(负责研究生教学) 2018年11月-2020年7月,上海交通大学,长聘教轨助理教授(Assistant Professor) 2016年3月-2018年11月,哈尔滨工业大学航天学院,讲师 2015年1月-2016年3月,美国Virginia Tech,博士后 2012年1月-2014年12月,美国Virginia Tech,工程力学,博士 2008年9月-2011年7月,重庆大学土木工程,硕士 2004年9月-2008年7月,重庆大学土木工程,本科 科研项目 [1] 2023.1-2034.12 ‘深蓝计划’基金面上项目,全向宽流速压电-电磁混合式海浪俘能机构设计与原样传感功能研究 [2] 2021.5-2021.10 子课题负责福清核电项目,XXX主给水泵液力耦合器国产化可行性研究 [3]2020.1-2021.8 子课题负责中国核动力研究院研究项目, 螺旋盘管在铅锚流体作用下的流致振动机理研究 [4]2020.12-2021.6 子课题负责中国船舶重工711研究项目, 含缺陷曲轴疲劳极限分析 [5]2020.1-2022.12 主持国家自然科学基金青年基金,基于尾流驰振的低速水流压电能量采集器分岔机理及性能研究 [6] 2019.7.1-2022.6.30 主持上海市自然科学基金面上项目,压电自参数吸振器目标能量转移机理和非线性振动控制研究 [7] 2019-2021长聘教轨助理教授科研启动项目,折纸超材料力学性能分析 [8] 2018.6-2019.6,主持上海交通大学船舰设备噪声与振动控制技术国防重点学科基金,船舶设备被动/半主动压电自参数吸振器理论与实验研究 [9] 2018.6-2018.12,主持中国博士后科学基金特别资助,2018T110283,驰振压电能量采集系统机电解耦及优化设计研究 [10] 2017.6-2018.12,主持中国博士后科学基金面上项目(一等),2017M610202,舞动压电风能采集器外接交流与直流电路系统建模与优化 [11] 2017.1-2018.12,主持哈尔滨工业大学国防重点实验室基金,HIT.KLOF.2016.072,高超音速飞行器颤振分析与被动控制 [12] 2009.08-2016.12,参与美国空军实验室与弗吉尼亚理工合作研究基金项目,Multidisciplinary Analysis and Design of Future Aerospace Vehicles 教学工作 研究生课程:非线性连续介质力学(秋季) 软件版权登记及专利 1. 一种基于自参数动力吸振器的压电能收集器测试装置,中国,ZL201810759838.7,2020.06.09,排序1 2. 一种利用机械振动转换成电能的装置,中国,ZL201810725513.7,2020.07.04,排序1 3. 一种基于动力吸振器的压电能量收集器测试装置,中国,ZL201810682047.9,2020.07.07,排序1 4. 一种压电能收集器测试装置及测试方法,中国,ZL201810290275.1,2020.07.03,排序1 5. 基于风致振动的串错列压电采集器测试装置和测试方法,中国,ZL20191059-139.9,2020.07.14,排序1 6. 基于内共振原理的宽频俘能防振锤装置,中国,CN202010716136.8,2020.07.23,排序1 7. 尾流激振的覆冰形能量采集器,中国,CN202010742224.5,2020.07.29, 排序1 8. 基于声子晶体的可调频声能采集装置,中国,CN202010812642.7,2020.08.13,排序1 荣誉和奖励 2022 上海市力学学会优秀青年学者 2022 硕士国家奖学金 (黄涔凌) 2022 博士国家奖学金(张梁) 2020 上海交通大学优秀班主任 2018 国际先进材料协会科学家奖章 2012-2015 中国留学基金委政府奖学金 2015 弗吉尼亚理工大学Liviu Librescu Memorial Scholarship奖学金 2008-2011 优秀研究生、优秀毕业生 2006年,2007年 国家奖学金(两次) 2004-2008 优秀毕业生,重庆市力学竞赛一等奖,科研创新先进个人

研究领域

力学超材料,声学超材料,扑翼微型飞行器,智能超材料和结构,非线性振动与控制,流固耦合

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

2023 60. Metamaterial based piezoelectric acoustic energy harvesting: Electromechanical coupled modeling and experimental validation Xiao H.J., Li T.R., Zhang L., Liao W.H., Tan T., Yan Z.M.*. Mechanical Systems and Signal Processing, 2023, 185: 109808. 59. Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency Nie X.C., Tan T., Yan Z.M.*, Yan Z.T.*, Wang L.Z., Communications in Nonlinear Science and Numerical Simulation, 2023, 118: 107018 2022 58. Enhanced metamaterial vibration for high-performance acoustic piezoelectric energy harvesting Sun W.P., Zhong K.X., Liu Y.Y., Xiao H.J., Zhao D.L., Yan Z.M., Tan T., Composites Communications, 2020, 35:101342 57. Symmetry-breaking self-sustained oscillation in nonlinear two-phase flow Shi G.W., Tan T., Xiao Y., Zhang W., Zhu Y.F., Yan Z.M.*, International Journal of Heat and Mass Transfer, 2022, 199: 123480 56. Bistable programmable origami based soft electricity generator with inter-well modulation. Huang C.L., Tan T., Wang Z.M., Nie X.C., Zhang S.M., Yang F.P., Lin Z.L., Wang B.L., Yan Z.M.*. Nano Energy, 2022, 103: 107775. 55. Bio-inspired programmable multi-stable origami. Huang C.L., Tan T., Hu X.Y., Yang F.P., Yan Z.M.*. Appl. Phys. Lett., 2022, 121, 051902 54 Topological imbalanced phononic crystal with semi-enclosed defect for high-performance acoustic energy confinement and harvesting. Zhang L., Tan T., Z Yu Z.Y., Yan Z.M.*. Nano Energy, 2022, 100: 107472. 53 Nonlinear 1:2 internal resonance response of L-shaped piezoelectric energy harvester under the influence of electrical damping Nie X.C., Pei S., Tan T., Yan Z.T.*, Yan Z.M.* International Journal of Mechanical Sciences 225 (2022) 107365 52. Origami dynamics based soft piezoelectric energy harvester for machine learning assisted self-powered gait biometric identification Huang C.L.; Tan T.; Wang Z.M.; Zhang S.M.; Yang F.P.; Lin Z.L.; Yan Z.M.* Energy Conversion and Management 263 (2022) 115720 51. Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization Wang Z.M., Du Y., Li T.R., Yan Z.M. and Tan T., Energy Conversion and Management 261 (2022) 115638 50. Nonlinear analysis of the internal resonance response of an L-shaped beam structure considering quadratic and cubic nonlinearity Nie X.C., Gao X., Wang L.Z., Tan T., Yan Z.T.*, Yan Z.M.* and Liu X.P. Journal of Statistical Mechanics: Theory and Experiment, (2022) 023204 49. Hydrodynamic piezoelectric energy harvesting with topological strong vortex by forced separation Shi G.W., Tan T., Hu S., Yan Z.M.* International Journal of Mechanical Sciences, 223(2022), 107261 48 Band-gap dynamics and programming for low-frequency broadband acoustic metamaterial Yan Z.M., Xiao H.J., Liu Y.Y., Tan T. Composite Structures, 291 (2022), 115535 47 Coupled vortex-induced modeling for spatially large-curved beam with elastic support Sun K.J., Nie X.C., Tan T., Yu Z.Y., Yan Z.M.*, International Journal of Mechanical Sciences, 214 (2022), 106903 2021 46 Wind Piezoelectric energy harvesting enhanced by elastic-interfered wake-induced vibration Yan Z.M., Shi G.W., Zhou J., Wang L.Z., Zuo L., Tan T. Energy Conversion & Management, 249 (2021) 114820 45 Dual-band piezoelectric acoustic energy harvesting by structural and local resonances of Helmholtz metamaterial Li T.R., Wang Z.M., Xiao H.J., Yan Z.M., Yang C., Tan T.* Nano Energy, 90 (2021) 106523. 44 Nonlinear broadband piezoelectric vibration energy harvesting enhanced by inter-well modulation Wang Z.M., Li T.R., Du Y.,Yan Z.M., Tan T.* Energy Conversion & Management, 2021, 246 (2021) 114661 43 A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design Wang Z.M., Du Y., Li T.R., Yan Z.M., Tan T.* Applied Energy, 303 (2021) 117577. 42 Piezoelectric autoparametric vibration energy harvesting with chaos control feature Tan T., Wang Z.M., Zhang L., Liao W.H., Yan Z.M.* Mechanical Systems and Signal Processing, 2021, 161: 107989 41 Environment coupled piezoelectric galloping wind energy harvesting. Tan T., Zuo L., Yan Z.M.*, Sensors and Actuators A, 2021:323,112641. 40. Hydrokinetic piezoelectric energy harvesting by wake induced vibration Zhao D.L., Zhou J., Tan T., Yan Z.M.*, Sun W.P., Yin J.L., Zhang W.M., Energy, 2021: 220, 119722 39. Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting Ma K.J., Tan T.*, Yan Z.M., Liu F.R., Liao W.H., Zhang W.M.* Nano Energy, 2021: 82, 105693 2020 38.Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design, Zhao D.L., Hu X.Y., Tan T., Yan Z.M.*, Zhang W.M., Energy Conversion and Management, 2020, 222: 113260. 37. Nonlinear characterization and performance optimization for broadband bistable energy harvester. Tan T., Yan Z.M., Ma K.J., Liu F.R., Zhao L.C., Zhang W.M.*, Acta Mechanica Sinica, 2020 36. Ultra broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening. Yan Z.M., Sun W.P., Hajj M.R., Zhang W.M., Tan T.*. Nonlinear Dynamics, 2020: 100, 1057-1077 (SCI, Q1). 35. Ultra-wideband piezoelectric energy harvester based on stockbridge damper and its application in smart grid Nie X.C., Tan T., Yan Z.M.*, Yan Z.T.*, Zhang W.M.. Applied Energy, 2020: 267, 114898. 34. Energy harvesting from iced-conductor inspired wake galloping Yan Z.M., Wang L.Z., Hajj M.R., Yan Z.T., Sun Y., Tan T.*. Extreme Mechanics Letters, 2020, 35: 100633 (SCI, Q1) 33. Piezoelectromagnetic synergy design and performance analysis for wind galloping energy harvester. Tan T., Hu X.Y., Yan Z.M.*, Zou Y.J., Zhang W.M.. Sensors and Actuators A, 2020, 302: 111813. (SCI, Q2) 2019 32. Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Tan T., Hu X.Y., Yan Z.M.*, Zhang W.M.. Energy, 2019, 187: 115915. (SCI, Q1) 31. Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things Tan T., Yan Z.M., Zou H.X., Ma K.J., Liu F.R., Zhao L.C., Peng Z.K., Zhang W.M.*. Applied Energy, 2019, 254: 113717. (SCI, Q1) 30. Integration of tapered beam and four direct-current circuits for enhanced energy harvesting from transverse galloping Wang L.Z., Tan T., Yan Z.M.*, Li D.Z., Zhang B., Yan Z.T.*, IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2248-2260. (SCI, Q1) 29. Tapered galloping energy harvester for power enhancement and vibration reduction Wang L.Z., Tan T., Yan Z.M.*, Yan Z.T.*, Journal of Intelligent Material Systems and Structures, 2019, 30(18-19): 2853-2869. (SCI, Q2) 28. Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance Nie X.C., Tan T., Yan Z.M.*, Yan Z.T.*, Hajj M.R., International Journal of Mechanical Sciences, 2019, 159, 287–305 (SCI, Q1) 27. Low velocity water flow energy harvesting using vortex induced vibration and galloping Sun W.P., Zhao D.L., Tan T., Yan Z.M.*, Guo P.C., Luo X.Q.,Applied Energy, 2019, 251, 113392 (SCI, Q1) 26. Optimal dual-functional design for a piezoelectric autoparametric vibration absorber Tan T., Yan Z.M.*, Zou Y.J., Zhang W.M., Mechanical Systems and Signal Processing, 2019, 123: 513–532(SCI, Q1) 2018 25. Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions Yan Z.M.*, Sun W.P., Tan T., Huang W.H., Communications in Nonlinear Science and Numerical Simulation, 2018, 62:90-116 (SCI, Q1) 24. Nonlinear characterization of the rotor-bearing system with the oil-film and unbalance forces considering the effect of the oil-temperature Sun W.P., Yan Z.M.*, Tan T., Zhao D.L., Luo X.Q., Nonlinear Dynamics, 2018, 10.1007/s11071-018-4113-5 (SCI, Q1) 23. Nonlinear analysis for dual-frequency concurrent energy harvesting, Yan Z.M.*, Lei H., Tan T., Sun W.P., Huang W.H., Mechanical Systems and Singal Processing, 2018, 104: 514-535 (SCI, Q1) 22. Passive control of transonic flutter with a nonlinear energy sink Yan Z.M., Ragab S., Hajj M.R.*, Nonlinear Dynamics, 2018, 91(1):577-590 (SCI, Q1) 21. Energy harvesting from water flow in open channel with macro fiber composite Sun W.P., Tan T., Yan Z.M.*, Sun W.P., Zhao D.L., Luo X.Q., Huang W.H., AIP advances, 2018, 8, 095107 (SCI, Q3) 2017 20. Broadband design of hybrid piezoelectric energy harvester Tan T., Yan Z.M.*, Huang W.H., International Journal of Mechanical Sciences 131-132: 516-526, 2017 (SCI, Q1) 19. Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits Tan T., Yan Z.M.*, Lei H., Smart Materials and Structures 26(7): 075007, 2017 (SCI, Q1) 18. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters Tan T., Yan Z.M.*, AIP advances 7 (3), 035318, 2017 (SCI, Q3) 17. Geometric Nonlinear Distributed Parameter Model for Cantilever-beam Piezoelectric Energy Harvesters and Structural Dimension Analysis for Galloping Mode Tan T., Yan Z.M.*, Lei H., Sun W.P., Journal of Intelligent Material Systems and Structures, DOI: 10.1177/1045389X17704922, 2017 (SCI, Q2) 16. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode Tan T., Yan Z.M.*, Smart Materials and Structures 26(3):035062, 2017 (SCI, Q1) 15. Nonlinear characteristics of an autoparametric vibration system Yan Z.M.*, Taha H.E., Tan T., Journal of Sound andVibration 390, 1-22, 2017 (SCI, Q1) 14. Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester Yan Z.M.*, Hajj M.R., Journal of Intelligent Material Systems and Structures 28(2), 254-271, 2017 (SCI, Q2) 2016 13. Analytical solution and optimal design for galloping-based piezoelectric energy harvesters Tan T., Yan Z.M.*, Applied Physics Letters, 109 (25), 2016 (SCI, Q1) 12. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters Tan T., Yan Z.M.*, Hajj M.R., Applied Physics Letters 109(10):101908, 2016 (SCI, Q1) 11. Vibration of a Rectangular Plate Carrying a Massive Machine with Elastic Supports Wang L.Z., Yan Z.T.*, Li Z.L., Yan Z.M., International Journal of Structural Stability and Dynamics 16 (10), 1550069 , 2016 (SCI, Q2) 2015 10. Energy Harvesting from an autoparametric vibration absorber Yan Z.M.*, Hajj M.R., Smart Materials and Structures 24 (11), 2015 (SCI, Q1) 9. Effects of Aerodynamics Modeling on Optimum Wing Kinematics of Hovering MAVs Yan Z.M.*, Taha H.E., Hajj M.R., Aerospace Science and Technology, 45, 39-49, 2015 (SCI, Q1) 2014 8. Geometrically-exact unsteady model for airfoils undergoing large amplitude maneuvers Yan Z.M.*, Taha H.E., Hajj M.R., Aerospace Science and Technology, 39, 293-306, 2014 (SCI, Q1) 7. Nonlinear characterization of concurrent energy harvesting from galloping and base excitations Yan Z.M., Abdelkefi A.*, Nonlinear dynamics, 77 (4), 1171-1189, 2014 (SCI, Q1) 6. Piezoelectric energy harvesting from hybrid vibrations Yan Z.M., Abdelkefi A.*, Hajj M.R., Smart Materials and Structures 23 (2), 025026, 2014 (SCI, Q1) 5. Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries Abdelkefi A.*, Yan Z.M., Hajj M.R., Journal of Intelligent Materials Systems and Structures 25 (2), 246-256, 2014 (SCI, Q2) 2013 4. Nonlinear dynamics of galloping-based piezoaeroelastic energy harvesters Abdelkefi A.*, Yan Z.M., Hajj M.R., The European Physical Journal Special Topic 222 (7), 1483-1501, 2013 (SCI, Q2) 3. Temperature impact on the performance of galloping-based piezoeroelastic energy harvesters Abdelkefi A.*, Yan Z.M., Hajj M.R., Smart Materials and Structures 22 (5), 055026, 2013 (SCI, Q1) 2. Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping Abdelkefi A.*, Yan Z.M., Hajj M.R., Smart Materials and Structures 22 (2), 025016, 2013 (SCI, Q1) 2012 1. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity Yan Z.M., Yan Z.T.*, Li Z.L., Tan T., Journal of sound and vibration 331 (15), 3599-3616, 2012 (SCI, Q1)

学术兼职

AIAA会员,中国力学学会会员 SCI期刊审稿人,包括Smart Materials and Structures, Nonlinear Dynamics, International Journal of Mechanical Science, Energy, Applied Physics Letters, Journal of Energy Engineering, Communications in Nonlinear Science and Numerical Simulations, Energy Conversions and Management, IEEE Access, Journal of Intelligent Materials Systems and Structures, Journal of Engineering Mechanics等。

推荐链接
down
wechat
bug